Skip to main content

Calmbots: Exploring Madagascar Cockroaches as Living Ubiquitous Interfaces

  • Conference paper
  • First Online:
Universal Access in Human-Computer Interaction. Novel Design Approaches and Technologies (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13308))

Included in the following conference series:

Abstract

We introduce Calmbots, insect-based interfaces comprising multiple functions (transportation, display, drawing, or haptics) for use in human living spaces by taking advantage of insects’ capabilities. We utilized Madagascar hissing cockroaches as robots because of advantages such as mobility, strength, hiding, and self-sustaining abilities. Madagascar hissing cockroaches, for instance, can be controlled to move on uneven cable-lines floors and push light-weight objects such as tablespoon. We controlled the cockroaches’ movement using electrical stimulation and developed a system for tracking and communicating with their backpacks using augmented reality markers and a radio-based station, the steps of controlling multiple cockroaches for reaching their goals and transporting objects, and customized optional parts. Our method demonstrated effective control over a group of three or five cockroaches, with, at least, 60% success accuracy in dedicated experimental environments involving over forty trials for each test. Calmbots could move on carpeted or cable-lines floor and did not become desensitized to stimulation under a certain break interval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.sony.com/en/SonyInfo/design/stories/toio/.

References

  1. Cai, L., Dai, Z., Wang, W., Wang, H., Tang, Y.: Modulating motor behaviors by electrical stimulation of specific nuclei in pigeons. J. Bionic Eng. 12(4), 555–564 (2015)

    Article  Google Scholar 

  2. Dirafzoon, A., Bozkurt, A., Lobaton, E.: A framework for mapping with biobotic insect networks: from local to global maps. Robot. Auton. Syst. 88, 79–96 (2017)

    Google Scholar 

  3. Amano, K., Yamamoto, A.: Tangible interactions on a flat panel display using actuated paper sheets. Association for Computing Machinery, New York (2012)

    Book  Google Scholar 

  4. Braley, S., Rubens, C., Merritt, T.R., Vertegaal, R.: GridDrones: a self-levitating physical voxel lattice for 3d surface deformations. Association for Computing Machinery, New York (2018)

    Google Scholar 

  5. Chaimowicz, L., et al.: Deploying air-ground multi-robot teams in urban environments. In: Parker, L.E., Schneider, F.E., Schultz, A.C. (eds.) Multi-Robot Systems. From Swarms to Intelligent Automata, vol. III, pp. 223–234. Springer, Dordrecht (2005). https://doi.org/10.1007/1-4020-3389-3_18

    Chapter  Google Scholar 

  6. Choo, H.Y., Li, Y., Cao, F., Sato, H.: Electrical stimulation of coleopteran muscle for initiating flight. PLoS ONE 11(4), 1–9 (2016)

    Google Scholar 

  7. Ducatelle, F., Di Caro, G.A., Pinciroli, C., Gambardella, L.M.: Self-organized cooperation between robotic swarms. Swarm Intell. 5(2), 73 (2011)

    Article  Google Scholar 

  8. Erickson, J.C., Herrera, M., Bustamante, M., Shingiro, A., Bowen, T.: Effective stimulus parameters for directed locomotion in Madagascar hissing cockroach biobot. PLoS ONE 10, e0134348 (2015)

    Article  Google Scholar 

  9. Follmer, S., Leithinger, D., Olwal, A., Hogge, A., Ishii, H.: Inform: dynamic physical affordances and constraints through shape and object actuation. Association for Computing Machinery, New York (2013)

    Google Scholar 

  10. Goc, M.L., Kim, L.H., Parsaei, A., Fekete, J., Dragicevic, P., Follmer, S.: Zooids: building blocks for swarm user interfaces. In: Rekimoto, J., Igarashi, T., Wobbrock, J.O., Avrahami, D. (eds.) Proceedings of the 29th Annual Symposium on User Interface Software and Technology, UIST 2016, Tokyo, Japan, 16–19 October 2016, pp. 97–109. ACM (2016)

    Google Scholar 

  11. Grieder, R., Alonso-mora, J., Bloechlinger, C., Siegwart, R., Beardsley, P.: Multi-robot control and interaction with a hand-held tablet

    Google Scholar 

  12. Halloy, J., et al.: Social integration of robots into groups of cockroaches to control self-organized choices. Science 318(5853), 1155–1158 (2007)

    Article  Google Scholar 

  13. Hauri, S., Alonso-Mora, J., Breitenmoser, A., Siegwart, R., Beardsley, P.: Multi-robot formation control via a real-time drawing interface. In: Yoshida, K., Tadokoro, S. (eds.) Field and Service Robotics. STAR, vol. 92, pp. 175–189. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-40686-7_12

    Chapter  Google Scholar 

  14. How, J.P., Behihke, B., Frank, A., Dale, D., Vian, J.: Real-time indoor autonomous vehicle test environment. IEEE Control Syst. Mag. 28(2), 51–64 (2008)

    Article  MathSciNet  Google Scholar 

  15. Kim, J., Lee, K., Kim, Y., Kuppuswamy, N.S., Jo, J.: Ubiquitous robot: a new paradigm for integrated services. In: Proceedings 2007 IEEE International Conference on Robotics and Automation, pp. 2853–2858 (2007)

    Google Scholar 

  16. Kim, L.H., Drew, D.S., Domova, V., Follmer, S.: User-defined swarm robot control. Association for Computing Machinery, New York (2020)

    Book  Google Scholar 

  17. Kim, L.H., Follmer, S.: UbiSwarm: ubiquitous robotic interfaces and investigation of abstract motion as a display, vol. 1, no. 3 (2017)

    Google Scholar 

  18. Kolling, A., Nunnally, S., Lewis, M.: Towards human control of robot swarms. Association for Computing Machinery, New York (2012)

    Book  Google Scholar 

  19. Latif, T., Bozkurt, A.: Line following terrestrial insect biobots. In: 2012 Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 972–975 (2012)

    Google Scholar 

  20. Latif, T., Whitmire, E., Novak, T., Bozkurt, A.: Towards fenceless boundaries for solar powered insect biobots. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1670–1673 (2014)

    Google Scholar 

  21. Le, D.L., et al.: Neurotransmitter-loaded nanocapsule triggers on-demand muscle relaxation in living organism. ACS Appl. Mater. Interf. 10(44), 37812–37819 (2018)

    Google Scholar 

  22. Le Goc, M., Perin, C., Follmer, S., Fekete, J., Dragicevic, P.: Dynamic composite data physicalization using wheeled micro-robots. IEEE Trans. Visual Comput. Graphics 25(1), 737–747 (2019)

    Article  Google Scholar 

  23. Lee, Y., Kim, M., Kim, H.: Rolling pixels: robotic Steinmetz solids for creating physical animations. Association for Computing Machinery, New York (2020)

    Book  Google Scholar 

  24. Liang, G., Luo, H., Li, M., Qian, H., Lam, T.L.: FreeBOT: a freeform modular self-reconfigurable robot with arbitrary connection point - design and implementation, October 2020

    Google Scholar 

  25. Nakagaki, K., Leong, J., Tappa, J.L., Wilbert, J.A., Ishii, H.: HERMITS: dynamically reconfiguring the interactivity of self-propelled TUIs with mechanical shell add-ons. Association for Computing Machinery, New York (2020)

    Google Scholar 

  26. Nakagaki, K., Liu, Y.R., Nelson-Arzuaga, C., Ishii, H.: TRANS-DOCK: expanding the interactivity of pin-based shape displays by docking mechanical transducers. Association for Computing Machinery, New York (2020)

    Book  Google Scholar 

  27. Ochiai, Y., Hoshi, T., Rekimoto, J.: Pixie dust: graphics generated by levitated and animated objects in computational acoustic-potential field. ACM Trans. Graph. 33(4), 1–13 (2014)

    Article  Google Scholar 

  28. Panzenhagen, S.J.: Characterization of the 2-phase turning response of Madagascar hissing cockroach biobots to antennal stimulation. Ph.D. thesis (2019)

    Google Scholar 

  29. Poupyrev, I., Nashida, T., Okabe, M.: Actuation and tangible user interfaces: the Vaucanson duck, robots, and shape displays. Association for Computing Machinery, New York (2007)

    Book  Google Scholar 

  30. Rezeck, P.A.F., Azpurua, H., Chaimowicz, L.: HeRo: an open platform for robotics research and education. In: 2017 Latin American Robotics Symposium (LARS) and 2017 Brazilian Symposium on Robotics (SBR), pp. 1–6 (2017)

    Google Scholar 

  31. Riggs, T.A., Inanc, T., Zhang, W.: An autonomous mobile robotics testbed: construction, validation, and experiments. IEEE Trans. Control Syst. Technol. 18(3), 757–766 (2010)

    Article  Google Scholar 

  32. Romano, D., Donati, E., Benelli, G., Stefanini, C.: A review on animal-robot interaction: from bio-hybrid organisms to mixed societies. Biol. Cybern. 113(3), 201–225 (2019)

    Article  Google Scholar 

  33. Sanchez, C.J., Chiu, C.W., Zhou, Y., González, J.M., Vinson, S.B., Liang, H.: Locomotion control of hybrid cockroach robots. J. R. Soc. Interface 12(105), 20141363 (2015)

    Article  Google Scholar 

  34. Sareen, H., Zheng, J., Maes, P.: Cyborg botany: augmented plants as sensors, displays and actuators. Association for Computing Machinery, New York (2019)

    Google Scholar 

  35. Stubbs, A., Vladimerou, V., Fulford, A.T., King, D., Strick, J., Dullerud, G.E.: Multivehicle systems control over networks: a hovercraft testbed for networked and decentralized control. IEEE Control Syst. Mag. 26(3), 56–69 (2006)

    Article  Google Scholar 

  36. Suzuki, R., Nakayama, R., Liu, D., Kakehi, Y., Gross, M.D., Leithinger, D.: LiftTiles: modular and reconfigurable room-scale shape displays through retractable inflatable actuators. Association for Computing Machinery, New York, (2019)

    Book  Google Scholar 

  37. Suzuki, R., et al.: Shapebots: shape-changing swarm robots. Association for Computing Machinery, New York (2019)

    Google Scholar 

  38. Visvanathan, K., Gianchandani, Y.B.: Locomotion response of airborne, ambulatory and aquatic insects to thermal stimulation using piezoceramic microheaters. J. Micromech. Microeng. 21(12), 125002 (2011)

    Google Scholar 

  39. Wang, Y., Lu, M., Wu, Z., Zheng, X., Pan, G.: Visual cue-guided rat cyborg. In: Guger, C., Allison, B., Lebedev, M. (eds.) Brain-Computer Interface Research. SECE, pp. 65–78. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-64373-1_7

  40. Weiser, M.: The computer for the 21st century. SIGMOBILE Mob. Comput. Commun. Rev. 3(3), 3–11 (1999)

    Google Scholar 

  41. Weiss, M., Schwarz, F., Jakubowski, S., Borchers, J.: Madgets: actuating widgets on interactive tabletops. Association for Computing Machinery, New York (2010)

    Google Scholar 

  42. Whitmire, E., Latif, T., Bozkurt, A.: Acoustic sensors for biobotic search and rescue. In: SENSORS, 2014 IEEE, pp. 2195–2198 (2014)

    Google Scholar 

  43. Whitmire, E., Latif, T., Bozkurt, A.:

    Google Scholar 

  44. Yamanaka, S., Miyashita, H.: Vibkinesis: notification by direct tap and “dying message” using vibronic movement controllable smartphones. Association for Computing Machinery, New York (2014)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Pixie Dust Technologies, Inc. in Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Li Lu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsukuda, Y., Tagami, D., Sadasue, M., Suzuki, S., Lu, JL., Ochiai, Y. (2022). Calmbots: Exploring Madagascar Cockroaches as Living Ubiquitous Interfaces. In: Antona, M., Stephanidis, C. (eds) Universal Access in Human-Computer Interaction. Novel Design Approaches and Technologies. HCII 2022. Lecture Notes in Computer Science, vol 13308. Springer, Cham. https://doi.org/10.1007/978-3-031-05028-2_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05028-2_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05027-5

  • Online ISBN: 978-3-031-05028-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics