Skip to main content

Designing AI-Support VR by Self-supervised and Initiative Selective Supports

  • Conference paper
  • First Online:
Universal Access in Human-Computer Interaction. User and Context Diversity (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13309))

Included in the following conference series:

  • 1294 Accesses

Abstract

To provide flexible support ways and intelligent support contents for users in VR contexts, compared with the existing support ways of either single or combination of sensing functions, e.g., support of gesture, head or body movement. In our proposal, to provide flexible support functions conditioned on VR contexts or user’s feedbacks, we propose to use a semi-automatic selection of interactive supports. In modeling of semi-selection by user’s feedbacks and VR contexts, we propose to evaluate the performance by consideration of both intelligent AI evaluation, based on data of users’ performance in VR, and user’s initiative feedbacks. Furthermore, to provide customizable or personalized estimation in the VR support, we propose to apply the machine learning of self-supervised learning. Therefore, we are able to train or retrain estimation models with efficiency of low-cost of data works, including reduction of data-labeling cost or reuse of existing models. We require to evaluate the timing of applying selection or modification of support ways, the balance of ratios of automatics or user-initiative due to user preference or experiences or smoothness of VR contexts, and even user awareness or understanding, etc. Further, we require to evaluate the scale, numbers, size, and limitation of data or training that are needed for stable, accurate, and useful estimations of VR support.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahuja, K., Islam, R., Parashar, V., Dey, K., Harrison, C., Goel, M.: EyeSpyVR: interactive eye sensing using off-the-shelf, smartphone-based VR headsets. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(2), 57:1–57:10 (2018)

    Google Scholar 

  2. Arabadzhiyska, E., Tursun, O.T., Myszkowski, K., Seidel, H., Didyk, P.: Saccade landing position prediction for gaze-contingent rendering. ACM Trans. Graph. 36(4), 50:1–50:12 (2017)

    Google Scholar 

  3. Azuma, R.T., Bishop, G.: A frequency-domain analysis of head-motion prediction. In: Mair, S.G., Cook, R. (eds.) Proceedings of the 22nd Annual Conference on Computer Graphics and Interactive Techniques, SIGGRAPH 1995, Los Angeles, CA, USA, 6–11 August 1995, pp. 401–408. ACM (1995)

    Google Scholar 

  4. Clarence, A., Knibbe, J., Cordeil, M., Wybrow, M.: Unscripted retargeting: reach prediction for haptic retargeting in virtual reality. In: IEEE Virtual Reality and 3D User Interfaces, VR 2021, Lisbon, Portugal, 27 March–1 April 2021, pp. 150–159. IEEE (2021)

    Google Scholar 

  5. Corcoran, P.M., Nanu, F., Petrescu, S., Bigioi, P.: Real-time eye gaze tracking for gaming design and consumer electronics systems. IEEE Trans. Consum. Electron. 58(2), 347–355 (2012)

    Article  Google Scholar 

  6. Dohan, M., Mu, M.: Understanding user attention in VR using gaze controlled games. In: Hook, J., Stenton, P., Ursu, M.F., Schofield, G., Vatavu, R. (eds.) Proceedings of the 2019 ACM International Conference on Interactive Experiences for TV and Online Video, TVX 2019, Salford (Manchester), UK, 5–7 June 2019, pp. 167–173. ACM (2019)

    Google Scholar 

  7. Gamage, N.M., Ishtaweera, D., Weigel, M., Withana, A.: So predictable! Continuous 3D hand trajectory prediction in virtual reality. In: Nichols, J., Kumar, R., Nebeling, M. (eds.) UIST 2021: The 34th Annual ACM Symposium on User Interface Software and Technology, Virtual Event, USA, 10–14 October 2021, pp. 332–343. ACM (2021)

    Google Scholar 

  8. Gao, C., Zhang, X., Banerjee, S.: Conductive inkjet printed passive 2D trackpad for VR interaction. In: Shorey, R., Murty, R., Chen, Y.J., Jamieson, K. (eds.) Proceedings of the 24th Annual International Conference on Mobile Computing and Networking, MobiCom 2018, New Delhi, India, 29 October–02 November 2018, pp. 83–98. ACM (2018)

    Google Scholar 

  9. Gül, S., et al.: Reproducibility companion paper: Kalman filter-based head motion prediction for cloud-based mixed reality. In: Shen, H.T., et al. (eds.) MM 2021: ACM Multimedia Conference, Virtual Event, China, 20–24 October 2021, pp. 3619–3621. ACM (2021)

    Google Scholar 

  10. Hahn, M., Krüger, L., Wöhler, C.: 3D action recognition and long-term prediction of human motion. In: Gasteratos, A., Vincze, M., Tsotsos, J.K. (eds.) ICVS 2008. LNCS, vol. 5008, pp. 23–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-79547-6_3

    Chapter  Google Scholar 

  11. Hedeshy, R., Kumar, C., Menges, R., Staab, S.: Hummer: text entry by gaze and hum. In: Kitamura, Y., Quigley, A., Isbister, K., Igarashi, T., Bjørn, P., Drucker, S.M. (eds.) CHI 2021: CHI Conference on Human Factors in Computing Systems, Virtual Event/Yokohama, Japan, 8–13 May 2021, pp. 741:1–741:11. ACM (2021)

    Google Scholar 

  12. Henrikson, R., Grossman, T., Trowbridge, S., Wigdor, D., Benko, H.: Head-coupled kinematic template matching: a prediction model for ray pointing in VR. In: Bernhaupt, R., et al. (eds.) CHI 2020: CHI Conference on Human Factors in Computing Systems, Honolulu, HI, USA, 25–30 April 2020, pp. 1–14. ACM (2020)

    Google Scholar 

  13. Herman, L., Jurík, V., Stachon, Z., Vrbík, D., Russnák, J., Rezník, T.: Evaluation of user performance in interactive and static 3D maps. ISPRS Int. J. Geo Inf. 7(11), 415 (2018)

    Article  Google Scholar 

  14. Houser, S., Okafor, I., Raghav, V., Yoganathan, A.: Flow visualization of the non-parallel jet-vortex interaction. J. Vis. 21(4), 533–542 (2018). https://doi.org/10.1007/s12650-018-0478-2

    Article  Google Scholar 

  15. Humski, L., Pintar, D., Vranic, M.: Analysis of Facebook interaction as basis for synthetic expanded social graph generation. IEEE Access 7, 6622–6636 (2019)

    Article  Google Scholar 

  16. Jang, J.R., Hsu, C., Lee, H.: Continuous HMM and its enhancement for singing/humming query retrieval. In: ISMIR 2005, 6th International Conference on Music Information Retrieval, London, UK, 11–15 September 2005, Proceedings, pp. 546–551 (2005)

    Google Scholar 

  17. Lank, E., Cheng, Y.N., Ruiz, J.: Endpoint prediction using motion kinematics. In: Rosson, M.B., Gilmore, D.J. (eds.) Proceedings of the 2007 Conference on Human Factors in Computing Systems, CHI 2007, San Jose, California, USA, 28 April–3 May 2007, pp. 637–646. ACM (2007)

    Google Scholar 

  18. Laville, V., et al.: Deriving stratified effects from joint models investigating gene-environment interactions. BMC Bioinform. 21(1), 251 (2020)

    Article  Google Scholar 

  19. Majaranta, P., Bulling, A.: London

    Google Scholar 

  20. Markopoulos, E., Luimula, M., Ravyse, W., Ahtiainen, J., Aro-Heinilä, V.: Human computer interaction opportunities in hand tracking and finger recognition in ship engine room VR training. In: Markopoulos, E., Goonetilleke, R.S., Ho, A.G., Luximon, Y. (eds.) AHFE 2021. LNNS, vol. 276, pp. 343–351. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-80094-9_41

    Chapter  Google Scholar 

  21. Menges, R., Kumar, C., Staab, S.: Improving user experience of eye tracking-based interaction: introspecting and adapting interfaces. ACM Trans. Comput. Hum. Interact. 26(6), 37:1–37:46 (2019)

    Google Scholar 

  22. Murnane, M., Higgins, P., Saraf, M., Ferraro, F., Matuszek, C., Engel, D.: A simulator for human-robot interaction in virtual reality. In: IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VR Workshops 2021, Lisbon, Portugal, 27 March–1 April 2021, pp. 470–471. IEEE (2021)

    Google Scholar 

  23. Petersen, G.B., Petkakis, G., Makransky, G.: A study of how immersion and interactivity drive VR learning. Comput. Educ. 179, 104429 (2022)

    Article  Google Scholar 

  24. Soro, A.: Gestures and cooperation: considering non verbal communication in the design of interactive spaces. Ph.D. thesis, University of Cagliari, Italy (2012)

    Google Scholar 

  25. Sprengel, U., et al.: Virtual embolization for treatment support of intracranial AVMs using an interactive desktop and VR application. Int. J. Comput. Assist. Radiol. Surg. 16(12), 2119–2127 (2021)

    Article  Google Scholar 

  26. Vryzas, N., Matsiola, M., Kotsakis, R., Dimoulas, C., Kalliris, G.: Subjective evaluation of a speech emotion recognition interaction framework. In: Cunningham, S., Picking, R. (eds.) Proceedings of the Audio Mostly 2018 on Sound in Immersion and Emotion, Wrexham, United Kingdom, 12–14 September 2018, pp. 34:1–34:7. ACM (2018)

    Google Scholar 

  27. Vu, T.H., Misra, A., Roy, Q., Choo, K.T.W., Lee, Y.: Smartwatch-based early gesture detection 8 trajectory tracking for interactive gesture-driven applications. Proc. ACM Interact. Mob. Wearable Ubiquitous Technol. 2(1), 39:1–39:27 (2018)

    Google Scholar 

  28. Wang, L., Wang, H., Dai, D., Leng, J., Han, X.: Bidirectional shadow rendering for interactive mixed 360\(^{\circ }\) videos. In: IEEE Virtual Reality and 3D User Interfaces, VR 2021, Lisbon, Portugal, 27 March–1 April 2021, pp. 170–178. IEEE (2021)

    Google Scholar 

  29. Wang, Z., Xie, L., Wei, H., Zhang, K., Zhang, J.: Omnidirectional motion input: the basis of natural interaction in room-scale virtual reality. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops, VR Workshops, Atlanta, GA, USA, 22–26 March 2020, pp. 699–700. IEEE (2020)

    Google Scholar 

  30. Wienrich, C., Gross, R., Kretschmer, F., Müller-Plath, G.: Developing and proving a framework for reaction time experiments in VR to objectively measure social interaction with virtual agents. In: Kiyokawa, K., Steinicke, F., Thomas, B.H., Welch, G. (eds.) 2018 IEEE Conference on Virtual Reality and 3D User Interfaces, VR 2018, Tuebingen/Reutlingen, Germany, 18–22 March 2018, pp. 191–198. IEEE Computer Society (2018)

    Google Scholar 

Download references

Acknowledgement

This work was supported by Japan Science and Technology Agency (JST CREST: JPMJCR19F2, Research Representative: Prof. Yoichi Ochiai, University of Tsukuba, Japan), and by University of Tsukuba (Basic Research Support Program Type A).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jun-Li Lu .

Editor information

Editors and Affiliations

Appendices

Demonstration

Demonstration of prediction of user support using gazing in VR game: We showed a simple demo of AI support VR by using gazing, body language, and voice. The user was expected to support the shooting by AI using the analyzed gazing behaviors or head or hand movement during the VR game (Fig. 4).

Fig. 4.
figure 4

User’s gaze (pink line) and hand position (the position of gun) were shown in a shooting game of VR. (Color figure online)

Fig. 5.
figure 5

A modeling of self-supervised learning by using contrastive learning on images and related data of users.

Modeling of Self-supervised Learning

We also show a example of modeling self-supervised learning by using multi-factor data of users in VR contexts. In the model of Fig. 5, the given images from VR context can be trained to be suitable representation of features, thus the prediction of user supports can be updated or improved by a dataset of VR without additional data works on labeling or cleaning data.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mukherjee, R., Lu, JL., Ochiai, Y. (2022). Designing AI-Support VR by Self-supervised and Initiative Selective Supports. In: Antona, M., Stephanidis, C. (eds) Universal Access in Human-Computer Interaction. User and Context Diversity. HCII 2022. Lecture Notes in Computer Science, vol 13309. Springer, Cham. https://doi.org/10.1007/978-3-031-05039-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05039-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05038-1

  • Online ISBN: 978-3-031-05039-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics