Skip to main content

Diagnosis

  • Chapter
  • First Online:
AI and Big Data in Cardiology

Abstract

This chapter covers the clinical application of diagnosis of cardiovascular disease. A clinical opinion piece discusses the current clinical standard for diagnosis tasks and its limitations. The technical review summarizes the classical machine learning pipeline for medical diagnosis as well as some common types of traditional machine learning models that have been used for this application. Following this, some relevant deep learning architectures for computer-aided diagnosis are discussed. Some example applications of artificial intelligence based automated diagnosis are introduced and the key challenges highlighted. The practical tutorial deals with a simple diagnosis task based on characteristics derived from cardiac MR segmentations and other patient characteristics. The chapter closes with a clinical opinion piece that speculates on the future role of AI in cardiac diagnosis.

Authors’ contribution:

\(\bullet \) Introduction, Opinion: RR.

\(\bullet \) Main chapter: DR, MK, GK.

\(\bullet \) Tutorial: ND.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Editors’ note: There is some overlap in content between these descriptions and those provided in Chap. 4 but we choose to include both as we believe they act as complementary perspectives on these important concepts.

References

  1. Bendayan R, Mascio A, Stewart R, Roberts A, Dobson RJ. Cognitive trajectories in comorbid dementia with schizophrenia or bipolar disorder: The South London and Maudsley NHS foundation trust biomedical research centre (SLaM BRC) case register. Am J Geriatr Psychiatry. 2021;29(6):604–16.

    Article  Google Scholar 

  2. Peiffer-Smadja N, Rawson T, Ahmad R, Buchard A, Georgiou P, Lescure F-X, Birgand G, Holmes A. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin Microbiol Infect. 2020;26(5):584–95.

    Article  Google Scholar 

  3. Asan O, Bayrak AE, Choudhury A. Artificial intelligence and human trust in healthcare: Focus on clinicians. J Med Internet Res. 2020;22(6): e15154.

    Article  Google Scholar 

  4. Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2):73–81.

    Google Scholar 

  5. Colling R, Pitman H, Oien K, Rajpoot N, Macklin P, C.-P. A. in Histopathology Working Group, Snead D, Sackville T, Verrill C. Artificial intelligence in digital pathology: A roadmap to routine use in clinical practice. J Pathol. 2019;249(2):143–50.

    Google Scholar 

  6. Akkus Z, Aly YH, Attia IZ, Lopez-Jimenez F, Arruda-Olson AM, Pellikka PA, Pislaru SV, Kane GC, Friedman PA, Oh JK. Artificial intelligence (AI)-empowered echocardiography interpretation: A state-of-the-art review. J Clin Med. 2021;10(7):1391.

    Article  Google Scholar 

  7. Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-Horvat P, Slomka PJ, Dey D. Artificial intelligence in cardiovascular CT: Current status and future implications. J Cardiovasc Comput Tomogr. 2021.

    Google Scholar 

  8. Leiner T, Rueckert D, Suinesiaputra A, Baeßler B, Nezafat R, Išgum I, Young A. Machine learning in cardiovascular magnetic resonance: Basic concepts and applications. J Cardiovasc Magn Reson. 2019;21:12.

    Article  Google Scholar 

  9. Gupta K, Reddy S. Heart, eye, and artificial intelligence: A review. Cardiol Res. 2021.

    Google Scholar 

  10. Ruijsink B, Puyol-Antón E, Oksuz I, Sinclair M, Bai W, Schnabel JA, Razavi R, King AP. Fully automated, quality-controlled cardiac analysis from CMR: Validation and large-scale application to characterize cardiac function. JACC: Cardiovasc Imaging. 2020;13(3):684–95.

    Google Scholar 

  11. Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018.

    Google Scholar 

  12. Greenspan H, van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.

    Article  Google Scholar 

  13. Woolley RJ, Ceelen D, Ouwerkerk W, Tromp J, Figarska SM, Anker SD, Dickstein K, Filippatos G, Zannad F, Metra M, Ng L, Samani N, van Veldhuisen DJ, Lang C, Lam CS, Voors AA. Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction. Eur J Heart Fail. 2021;23(6):983–91.

    Article  Google Scholar 

  14. Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, Dahlström U, O’Connor CM, Felker GM, Desai NR. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc. 2018.

    Google Scholar 

  15. Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. Deep learning: A primer for radiologists. RadioGraphics. 2017;37(7):2113–31, pMID: 29131760.

    Google Scholar 

  16. Miller DD, Brown EW. Artificial intelligence in medical practice: The question to the answer? Am J Med. 2018;131(2):129–33.

    Article  Google Scholar 

  17. Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.

    Google Scholar 

  18. Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.

    Article  Google Scholar 

  19. Fauw JD, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O’Donoghue B, Visentin D, van den Driessche G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, Cornebise J, Keane PA, Ronneberger O. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24:1342–50.

    Google Scholar 

  20. Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.

    Article  Google Scholar 

  21. Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.

    Article  MATH  Google Scholar 

  22. Vapnik V. The nature of statistical learning theory. Springer; 2013.

    Google Scholar 

  23. Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res. 2001;2:265–92.

    MATH  Google Scholar 

  24. Criminisi A, Shotton J, Konukoglu E. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis. 2012;7(2–3):81–227.

    MATH  Google Scholar 

  25. Rokach L, Maimon O. Top-down induction of decision trees classifiers - a survey. IEEE Trans Syst Man Cybern Part C (Appl Rev). 2005;35(4):476–87.

    Google Scholar 

  26. Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55:119–39.

    Article  MathSciNet  MATH  Google Scholar 

  27. Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Proc IEEE. 1982;15:455–69.

    Google Scholar 

  28. Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.

    Article  Google Scholar 

  29. Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.

    Article  Google Scholar 

  30. Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.

    Google Scholar 

  31. Kingma DP, Welling M. Auto-encoding variational bayes. In: International conference on learning representations (ICLR); 2014.

    Google Scholar 

  32. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y. Generative adversarial nets. In: Advances in neural information processing systems (NIPS); 2014. p. 2672–80.

    Google Scholar 

  33. Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: International conference on machine learning (ICML); 2017. p. 214–23.

    Google Scholar 

  34. Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR); 2015. p. 3431–40.

    Google Scholar 

  35. Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Deep learning in medical image analysis and multimodal learning for clinical decision support; 2017. p. 240–8.

    Google Scholar 

  36. Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention - MICCAI. Springer. 2015;2015:234–41.

    Google Scholar 

  37. Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Med Image Anal. 58;2019.

    Google Scholar 

  38. Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR); 2017. p. 1125–34.

    Google Scholar 

  39. Madani A, Moradi M, Karargyris A, Syeda-Mahmood T. Chest x-ray generation and data augmentation for cardiovascular abnormality classification. In: SPIE medical imaging: image processing, vol. 10574; 2018. p. 105741M.

    Google Scholar 

  40. Torfi A, Fox EA, Reddy CK. Differentially private synthetic medical data generation using convolutional gans. Information Sciences. 2022; 586:485–500.

    Google Scholar 

  41. Torfi A, Fox EA, Reddy CK. Semi-supervised learning with generative adversarial networks for chest x-ray classification with ability of data domain adaptation. In: Proceedings of the IEEE international symposium on biomedical imaging (ISBI); 2018. p. 1038–42.

    Google Scholar 

  42. Leibig C, Allken V, Ayhan MS, Berens P, Wahl S. Leveraging uncertainty information from deep neural networks for disease detection. Sci Rep. 2017;7(1):1–14.

    Article  Google Scholar 

  43. Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, Fieguth P, Cao X, Khosravi A, Acharya UR, Makarenkov V, Nahavandi S. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf Fusion. 2021; 76:243–97.

    Google Scholar 

  44. Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Oxford University Press; 1970.

    Google Scholar 

  45. Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: International conference on machine learning (ICML); 2016. p. 1050–9.

    Google Scholar 

  46. Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in neural information processing systems (NIPS); 2017. p. 6402–13.

    Google Scholar 

  47. Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P, Cetin I, Lekadir K, Camara O, Ballester MAG, Sanroma G, Napel S, Petersen SE, Tziritas G, Grinias E, Khened M, Varghese A, Krishnamurthi G, Rohé M, Pennec X, Sermesant M, Isensee F, Jaeger P, Maier-Hein KH, Full PM, Wolf I, Engelhardt S, Baumgartner CF, Koch LM, Wolterink JM, Isgum I, Jang Y, Hong Y, Patravali J, Jain S, Humbert O, Jodoin P. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Trans Med Imaging. 2018;37(11):2514–25.

    Article  Google Scholar 

  48. Isensee F, Jaeger PF, Full PM, Wolf I, Engelhardt S, Maier-Hein KH. Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Statistical atlases and computational models of the heart; 2017. p. 120–9.

    Google Scholar 

  49. Khened M, Varghese A, Krishnamurthi G. Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest. In: Statistical atlases and computational models of the heart; 2017. p. 140–51.

    Google Scholar 

  50. Cetin I, Sanroma G, Petersen SE, Napel S, Camara O, Ballester MAG, Lekadir K. A radiomics approach to computer-aided diagnosis with cardiac cine-MRI. In: Statistical atlases and computational models of the heart; 2017. p. 82–90.

    Google Scholar 

  51. Wolterink JM, Leiner T, Viergever MA, Isgum I. Automatic segmentation and disease classification using cardiac cine MR images. In: Statistical atlases and computational models of the heart; 2017. p. 101–10.

    Google Scholar 

  52. Biffi C, Cerrolaza JJ, Tarroni G, Bai W, de Marvao A, Oktay O, Ledig C, Folgoc LL, Kamnitsas K, Doumou G, Duan J, Prasad SK, Cook SA, O’Regan DP, Rueckert D. Explainable anatomical shape analysis through deep hierarchical generative models. IEEE Trans Med Imaging. 2020;39(6):2088–99.

    Article  Google Scholar 

  53. Clough JR, Oksuz I, Puyol-Antón E, Ruijsink B, King AP, Schnabel JA. Global and local interpretability for cardiac MRI classification. In: Medical image computing and computer assisted intervention (MICCAI); 2019. p. 656–64.

    Google Scholar 

  54. Kim B, Wattenberg M, Gilmer J, Cai CJ, Wexler J, Viégas FB, Sayres R. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In: International conference on machine learning (ICML), vol. 80. PMLR; 2018. p. 2673–82.

    Google Scholar 

  55. Zheng Q, Delingette H, Ayache N. Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow. Med Image Anal. 2019;56:80–95.

    Article  Google Scholar 

  56. Puyol-Antón E, Ruijsink B, Gerber B, Amzulescu MS, Langet H, De Craene M, Schnabel JA, Piro P, King AP. Regional multi-view learning for cardiac motion analysis: Application to identification of dilated cardiomyopathy patients. IEEE Trans Biomed Eng. 2019;66(4):956–66.

    Article  Google Scholar 

  57. Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, Heidenreich PA, Harrington RA, Liang DH, Ashley EA, Zou JY. Video-based AI for beat-to-beat assessment of cardiac function. Nature. 2020;580:252–6.

    Article  Google Scholar 

  58. Alday EAP, Gu A, Shah AJ, Robichaux C, Wong AKI, Liu C, Liu F, Rad AB, Elola A, Seyedi S, Li Q, Sharma A, Clifford GD, Reyna MA. Classification of 12-lead ECGs: The PhysioNet/computing in cardiology challenge 2020. Nature. 2021;41(12), p. 124003.

    Google Scholar 

  59. Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;4:4006.

    Article  Google Scholar 

  60. Raisi-Estabragh Z, Izquierdo C, Campello VM, Martin-Isla C, Jaggi A, Harvey NC, Lekadir K, Petersen SE. Cardiac magnetic resonance radiomics: Basic principles and clinical perspectives. Eur Heart J - Cardiovasc Imaging. 2020;21(4):349–56.

    Google Scholar 

  61. Bai W, Suzuki H, Huang J, Francis C, Wang S, Tarroni G, Guitton F, Aung N, Fung K, Petersen SE, Piechnik SK, Neubauer S, Evangelou E, Dehghan A, O’Regan DP, Wilkins MR, Guo Y, Matthews PM, Rueckert D. A population-based phenome-wide association study of cardiac and aortic structure and function. Nat Med. 2020;26:1654–62.

    Article  Google Scholar 

  62. Petersen SE, Matthews PM, Francis JM, Robson MD, Zemrak F, Boubertakh R, Young AA, Hudson S, Weale P, Garratt S, Collins R, Piechnik S, Neubauer S. UK Biobank’s cardiovascular magnetic resonance protocol. J Cardiovasc Magn Reson. 2015;18:8.

    Article  Google Scholar 

  63. Tarroni G, Oktay O, Bai W, Schuh A, Suzuki H, Passerat-Palmbach J, de Marvao A, O’Regan DP, Cook S, Glocker B, Matthews PM, Rueckert D. Learning-based quality control for cardiac MR images. IEEE Trans Med Imaging. 2019;38(5):1127–38.

    Article  Google Scholar 

  64. Tarroni G, Bai W, Oktay O, Schuh A, Suzuki H, Glocker B, Matthews PM, Rueckert D. Large-scale quality control of cardiac imaging in population studies: Application to UK Biobank. Sci Rep. 2020;10(1):1–11.

    Article  Google Scholar 

  65. Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine. 2015;12(3): e1001779.

    Google Scholar 

  66. Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet. Circulation. 2000;101(23).

    Google Scholar 

  67. Rieke N, Hancox J, Li W, Milletarì F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA, Maier-Hein K, Ourselin S, Sheller M, Summers RM, Trask A, Xu D, Baust M, Cardoso MJ. The future of digital health with federated learning. NPJ Digit Med. 2020;3:119.

    Article  Google Scholar 

  68. Kaissis GA, Makowski MR, Rueckert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2:305–11.

    Article  Google Scholar 

  69. Puyol-Antón E, Ruijsink B, Harana JM, Piechnik SK, Neubauer S, Petersen SE, Razavi R, Chowienczyk P, King AP. Fairness in cardiac magnetic resonance imaging: Assessing sex and racial bias in deep learning-based segmentation. Front. Cardiovasc. Med., Sec. Cardiovascular Imaging Volume 9 – 2022 (https://doi.org/10.3389/fcvm.2022.859310)

  70. Noseworthy PA, Attia ZI, Brewer LC, Hayes SN, Yao X, Kapa S, Friedman PA, Lopez-Jimenez F. Assessing and mitigating bias in medical artificial intelligence: The effects of race and ethnicity on a deep learning model for ECG analysis. Circ Arrhythmia Electrophysiol. 2020;13(3).

    Google Scholar 

  71. ACDC challenge website. https://www.creatis.insa-lyon.fr/Challenge/acdc/.

  72. Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, Marwick TH. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am College Cardiol. 2019;73(11):1317–35.

    Article  Google Scholar 

  73. Fenech ME, Buston O. AI in cardiac imaging: A UK-based perspective on addressing the ethical, social, and political challenges. Front Cardiovasc Med. 2020;7(54).

    Google Scholar 

  74. Petersen SE, Abdulkareem M, Leiner T. Artificial intelligence will transform cardiac imaging-opportunities and challenges. Front Cardiovasc Med. 2019;6:133.

    Article  Google Scholar 

  75. Seetharam K, Brito D, Farjo PD, Sengupta PP. The role of artificial intelligence in cardiovascular imaging: State of the art review. Front Cardiovasc Med. 2020;7:374.

    Article  Google Scholar 

Download references

Acknowledgements

ND was supported by the French ANR (LABEX PRIMES of Univ. Lyon [ANR-11-LABX-0063] within the program “Investissements d’Avenir” [ANR-11-IDEX-0007], and the JCJC project “MIC-MAC” [ANR-19-CE45-0005]).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daniel Rueckert .

Editor information

Editors and Affiliations

5.1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (zip 955 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Rueckert, D., Knolle, M., Duchateau, N., Razavi, R., Kaissis, G. (2023). Diagnosis. In: Duchateau, N., King, A.P. (eds) AI and Big Data in Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-031-05071-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05071-8_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05070-1

  • Online ISBN: 978-3-031-05071-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics