Abstract
This chapter covers the clinical application of diagnosis of cardiovascular disease. A clinical opinion piece discusses the current clinical standard for diagnosis tasks and its limitations. The technical review summarizes the classical machine learning pipeline for medical diagnosis as well as some common types of traditional machine learning models that have been used for this application. Following this, some relevant deep learning architectures for computer-aided diagnosis are discussed. Some example applications of artificial intelligence based automated diagnosis are introduced and the key challenges highlighted. The practical tutorial deals with a simple diagnosis task based on characteristics derived from cardiac MR segmentations and other patient characteristics. The chapter closes with a clinical opinion piece that speculates on the future role of AI in cardiac diagnosis.
Authors’ contribution:
\(\bullet \) Introduction, Opinion: RR.
\(\bullet \) Main chapter: DR, MK, GK.
\(\bullet \) Tutorial: ND.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
Editors’ note: There is some overlap in content between these descriptions and those provided in Chap. 4 but we choose to include both as we believe they act as complementary perspectives on these important concepts.
References
Bendayan R, Mascio A, Stewart R, Roberts A, Dobson RJ. Cognitive trajectories in comorbid dementia with schizophrenia or bipolar disorder: The South London and Maudsley NHS foundation trust biomedical research centre (SLaM BRC) case register. Am J Geriatr Psychiatry. 2021;29(6):604–16.
Peiffer-Smadja N, Rawson T, Ahmad R, Buchard A, Georgiou P, Lescure F-X, Birgand G, Holmes A. Machine learning for clinical decision support in infectious diseases: A narrative review of current applications. Clin Microbiol Infect. 2020;26(5):584–95.
Asan O, Bayrak AE, Choudhury A. Artificial intelligence and human trust in healthcare: Focus on clinicians. J Med Internet Res. 2020;22(6): e15154.
Mintz Y, Brodie R. Introduction to artificial intelligence in medicine. Minim Invasive Ther Allied Technol. 2019;28(2):73–81.
Colling R, Pitman H, Oien K, Rajpoot N, Macklin P, C.-P. A. in Histopathology Working Group, Snead D, Sackville T, Verrill C. Artificial intelligence in digital pathology: A roadmap to routine use in clinical practice. J Pathol. 2019;249(2):143–50.
Akkus Z, Aly YH, Attia IZ, Lopez-Jimenez F, Arruda-Olson AM, Pellikka PA, Pislaru SV, Kane GC, Friedman PA, Oh JK. Artificial intelligence (AI)-empowered echocardiography interpretation: A state-of-the-art review. J Clin Med. 2021;10(7):1391.
Lin A, Kolossváry M, Motwani M, Išgum I, Maurovich-Horvat P, Slomka PJ, Dey D. Artificial intelligence in cardiovascular CT: Current status and future implications. J Cardiovasc Comput Tomogr. 2021.
Leiner T, Rueckert D, Suinesiaputra A, Baeßler B, Nezafat R, Išgum I, Young A. Machine learning in cardiovascular magnetic resonance: Basic concepts and applications. J Cardiovasc Magn Reson. 2019;21:12.
Gupta K, Reddy S. Heart, eye, and artificial intelligence: A review. Cardiol Res. 2021.
Ruijsink B, Puyol-Antón E, Oksuz I, Sinclair M, Bai W, Schnabel JA, Razavi R, King AP. Fully automated, quality-controlled cardiac analysis from CMR: Validation and large-scale application to characterize cardiac function. JACC: Cardiovasc Imaging. 2020;13(3):684–95.
Yasaka K, Akai H, Kunimatsu A, Kiryu S, Abe O. Deep learning with convolutional neural network in radiology. Jpn J Radiol. 2018.
Greenspan H, van Ginneken B, Summers RM. Guest editorial deep learning in medical imaging: Overview and future promise of an exciting new technique. IEEE Trans Med Imaging. 2016;35(5):1153–9.
Woolley RJ, Ceelen D, Ouwerkerk W, Tromp J, Figarska SM, Anker SD, Dickstein K, Filippatos G, Zannad F, Metra M, Ng L, Samani N, van Veldhuisen DJ, Lang C, Lam CS, Voors AA. Machine learning based on biomarker profiles identifies distinct subgroups of heart failure with preserved ejection fraction. Eur J Heart Fail. 2021;23(6):983–91.
Ahmad T, Lund LH, Rao P, Ghosh R, Warier P, Vaccaro B, Dahlström U, O’Connor CM, Felker GM, Desai NR. Machine learning methods improve prognostication, identify clinically distinct phenotypes, and detect heterogeneity in response to therapy in a large cohort of heart failure patients. J Am Heart Assoc. 2018.
Chartrand G, Cheng PM, Vorontsov E, Drozdzal M, Turcotte S, Pal CJ, Kadoury S, Tang A. Deep learning: A primer for radiologists. RadioGraphics. 2017;37(7):2113–31, pMID: 29131760.
Miller DD, Brown EW. Artificial intelligence in medical practice: The question to the answer? Am J Med. 2018;131(2):129–33.
Lecun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521:436–44.
Topol EJ. High-performance medicine: The convergence of human and artificial intelligence. Nat Med. 2019;25(1):44–56.
Fauw JD, Ledsam JR, Romera-Paredes B, Nikolov S, Tomasev N, Blackwell S, Askham H, Glorot X, O’Donoghue B, Visentin D, van den Driessche G, Lakshminarayanan B, Meyer C, Mackinder F, Bouton S, Ayoub K, Chopra R, King D, Karthikesalingam A, Hughes CO, Raine R, Hughes J, Sim DA, Egan C, Tufail A, Montgomery H, Hassabis D, Rees G, Back T, Khaw PT, Suleyman M, Cornebise J, Keane PA, Ronneberger O. Clinically applicable deep learning for diagnosis and referral in retinal disease. Nat Med. 2018;24:1342–50.
Esteva A, Kuprel B, Novoa RA, Ko J, Swetter SM, Blau HM, Thrun S. Dermatologist-level classification of skin cancer with deep neural networks. Nature. 2017;542:115–8.
Cortes C, Vapnik V. Support-vector networks. Mach Learn. 1995;20(3):273–97.
Vapnik V. The nature of statistical learning theory. Springer; 2013.
Crammer K, Singer Y. On the algorithmic implementation of multiclass kernel-based vector machines. J Mach Learn Res. 2001;2:265–92.
Criminisi A, Shotton J, Konukoglu E. Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning. Found Trends Comput Graph Vis. 2012;7(2–3):81–227.
Rokach L, Maimon O. Top-down induction of decision trees classifiers - a survey. IEEE Trans Syst Man Cybern Part C (Appl Rev). 2005;35(4):476–87.
Freund Y, Schapire RE. A decision-theoretic generalization of on-line learning and an application to boosting. J Comput Syst Sci. 1997;55:119–39.
Fukushima K, Miyake S. Neocognitron: A new algorithm for pattern recognition tolerant of deformations and shifts in position. Proc IEEE. 1982;15:455–69.
Lecun Y, Bottou L, Bengio Y, Haffner P. Gradient-based learning applied to document recognition. Proc IEEE. 1998;86(11):2278–324.
Hochreiter S, Schmidhuber J. Long short-term memory. Neural Comput. 1997;9(8):1735–80.
Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks. Science. 2006;313(5786):504–7.
Kingma DP, Welling M. Auto-encoding variational bayes. In: International conference on learning representations (ICLR); 2014.
Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Courville AC, Bengio Y. Generative adversarial nets. In: Advances in neural information processing systems (NIPS); 2014. p. 2672–80.
Arjovsky M, Chintala S, Bottou L. Wasserstein generative adversarial networks. In: International conference on machine learning (ICML); 2017. p. 214–23.
Long J, Shelhamer E, Darrell T. Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR); 2015. p. 3431–40.
Sudre CH, Li W, Vercauteren T, Ourselin S, Cardoso MJ. Generalised dice overlap as a deep learning loss function for highly unbalanced segmentations. In: Deep learning in medical image analysis and multimodal learning for clinical decision support; 2017. p. 240–8.
Ronneberger O, Fischer P, Brox T. U-net: Convolutional networks for biomedical image segmentation. In: Navab N, Hornegger J, Wells WM, Frangi AF, editors. Medical image computing and computer-assisted intervention - MICCAI. Springer. 2015;2015:234–41.
Yi X, Walia E, Babyn P. Generative adversarial network in medical imaging: A review. Med Image Anal. 58;2019.
Isola P, Zhu J-Y, Zhou T, Efros AA. Image-to-image translation with conditional adversarial networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition (CVPR); 2017. p. 1125–34.
Madani A, Moradi M, Karargyris A, Syeda-Mahmood T. Chest x-ray generation and data augmentation for cardiovascular abnormality classification. In: SPIE medical imaging: image processing, vol. 10574; 2018. p. 105741M.
Torfi A, Fox EA, Reddy CK. Differentially private synthetic medical data generation using convolutional gans. Information Sciences. 2022; 586:485–500.
Torfi A, Fox EA, Reddy CK. Semi-supervised learning with generative adversarial networks for chest x-ray classification with ability of data domain adaptation. In: Proceedings of the IEEE international symposium on biomedical imaging (ISBI); 2018. p. 1038–42.
Leibig C, Allken V, Ayhan MS, Berens P, Wahl S. Leveraging uncertainty information from deep neural networks for disease detection. Sci Rep. 2017;7(1):1–14.
Abdar M, Pourpanah F, Hussain S, Rezazadegan D, Liu L, Ghavamzadeh M, Fieguth P, Cao X, Khosravi A, Acharya UR, Makarenkov V, Nahavandi S. A review of uncertainty quantification in deep learning: Techniques, applications and challenges. Inf Fusion. 2021; 76:243–97.
Hastings WK. Monte Carlo sampling methods using Markov chains and their applications. Oxford University Press; 1970.
Gal Y, Ghahramani Z. Dropout as a Bayesian approximation: Representing model uncertainty in deep learning. In: International conference on machine learning (ICML); 2016. p. 1050–9.
Lakshminarayanan B, Pritzel A, Blundell C. Simple and scalable predictive uncertainty estimation using deep ensembles. In: Advances in neural information processing systems (NIPS); 2017. p. 6402–13.
Bernard O, Lalande A, Zotti C, Cervenansky F, Yang X, Heng P, Cetin I, Lekadir K, Camara O, Ballester MAG, Sanroma G, Napel S, Petersen SE, Tziritas G, Grinias E, Khened M, Varghese A, Krishnamurthi G, Rohé M, Pennec X, Sermesant M, Isensee F, Jaeger P, Maier-Hein KH, Full PM, Wolf I, Engelhardt S, Baumgartner CF, Koch LM, Wolterink JM, Isgum I, Jang Y, Hong Y, Patravali J, Jain S, Humbert O, Jodoin P. Deep learning techniques for automatic MRI cardiac multi-structures segmentation and diagnosis: Is the problem solved? IEEE Trans Med Imaging. 2018;37(11):2514–25.
Isensee F, Jaeger PF, Full PM, Wolf I, Engelhardt S, Maier-Hein KH. Automatic cardiac disease assessment on cine-MRI via time-series segmentation and domain specific features. In: Statistical atlases and computational models of the heart; 2017. p. 120–9.
Khened M, Varghese A, Krishnamurthi G. Densely connected fully convolutional network for short-axis cardiac cine MR image segmentation and heart diagnosis using random forest. In: Statistical atlases and computational models of the heart; 2017. p. 140–51.
Cetin I, Sanroma G, Petersen SE, Napel S, Camara O, Ballester MAG, Lekadir K. A radiomics approach to computer-aided diagnosis with cardiac cine-MRI. In: Statistical atlases and computational models of the heart; 2017. p. 82–90.
Wolterink JM, Leiner T, Viergever MA, Isgum I. Automatic segmentation and disease classification using cardiac cine MR images. In: Statistical atlases and computational models of the heart; 2017. p. 101–10.
Biffi C, Cerrolaza JJ, Tarroni G, Bai W, de Marvao A, Oktay O, Ledig C, Folgoc LL, Kamnitsas K, Doumou G, Duan J, Prasad SK, Cook SA, O’Regan DP, Rueckert D. Explainable anatomical shape analysis through deep hierarchical generative models. IEEE Trans Med Imaging. 2020;39(6):2088–99.
Clough JR, Oksuz I, Puyol-Antón E, Ruijsink B, King AP, Schnabel JA. Global and local interpretability for cardiac MRI classification. In: Medical image computing and computer assisted intervention (MICCAI); 2019. p. 656–64.
Kim B, Wattenberg M, Gilmer J, Cai CJ, Wexler J, Viégas FB, Sayres R. Interpretability beyond feature attribution: Quantitative testing with concept activation vectors (TCAV). In: International conference on machine learning (ICML), vol. 80. PMLR; 2018. p. 2673–82.
Zheng Q, Delingette H, Ayache N. Explainable cardiac pathology classification on cine MRI with motion characterization by semi-supervised learning of apparent flow. Med Image Anal. 2019;56:80–95.
Puyol-Antón E, Ruijsink B, Gerber B, Amzulescu MS, Langet H, De Craene M, Schnabel JA, Piro P, King AP. Regional multi-view learning for cardiac motion analysis: Application to identification of dilated cardiomyopathy patients. IEEE Trans Biomed Eng. 2019;66(4):956–66.
Ouyang D, He B, Ghorbani A, Yuan N, Ebinger J, Langlotz CP, Heidenreich PA, Harrington RA, Liang DH, Ashley EA, Zou JY. Video-based AI for beat-to-beat assessment of cardiac function. Nature. 2020;580:252–6.
Alday EAP, Gu A, Shah AJ, Robichaux C, Wong AKI, Liu C, Liu F, Rad AB, Elola A, Seyedi S, Li Q, Sharma A, Clifford GD, Reyna MA. Classification of 12-lead ECGs: The PhysioNet/computing in cardiology challenge 2020. Nature. 2021;41(12), p. 124003.
Aerts HJWL, Velazquez ER, Leijenaar RTH, Parmar C, Grossmann P, Carvalho S, Bussink J, Monshouwer R, Haibe-Kains B, Rietveld D, Hoebers F, Rietbergen MM, Leemans CR, Dekker A, Quackenbush J, Gillies RJ, Lambin P. Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach. Nat Commun. 2014;4:4006.
Raisi-Estabragh Z, Izquierdo C, Campello VM, Martin-Isla C, Jaggi A, Harvey NC, Lekadir K, Petersen SE. Cardiac magnetic resonance radiomics: Basic principles and clinical perspectives. Eur Heart J - Cardiovasc Imaging. 2020;21(4):349–56.
Bai W, Suzuki H, Huang J, Francis C, Wang S, Tarroni G, Guitton F, Aung N, Fung K, Petersen SE, Piechnik SK, Neubauer S, Evangelou E, Dehghan A, O’Regan DP, Wilkins MR, Guo Y, Matthews PM, Rueckert D. A population-based phenome-wide association study of cardiac and aortic structure and function. Nat Med. 2020;26:1654–62.
Petersen SE, Matthews PM, Francis JM, Robson MD, Zemrak F, Boubertakh R, Young AA, Hudson S, Weale P, Garratt S, Collins R, Piechnik S, Neubauer S. UK Biobank’s cardiovascular magnetic resonance protocol. J Cardiovasc Magn Reson. 2015;18:8.
Tarroni G, Oktay O, Bai W, Schuh A, Suzuki H, Passerat-Palmbach J, de Marvao A, O’Regan DP, Cook S, Glocker B, Matthews PM, Rueckert D. Learning-based quality control for cardiac MR images. IEEE Trans Med Imaging. 2019;38(5):1127–38.
Tarroni G, Bai W, Oktay O, Schuh A, Suzuki H, Glocker B, Matthews PM, Rueckert D. Large-scale quality control of cardiac imaging in population studies: Application to UK Biobank. Sci Rep. 2020;10(1):1–11.
Sudlow C, Gallacher J, Allen N, Beral V, Burton P, Danesh J, Downey P, Elliott P, Green J, Landray M, Liu B, Matthews P, Ong G, Pell J, Silman A, Young A, Sprosen T, Peakman T, Collins R. UK biobank: An open access resource for identifying the causes of a wide range of complex diseases of middle and old age. PLOS Medicine. 2015;12(3): e1001779.
Goldberger AL, Amaral LAN, Glass L, Hausdorff JM, Ivanov PC, Mark RG, Mietus JE, Moody GB, Peng C-K, Stanley HE. PhysioBank, PhysioToolkit, and PhysioNet. Circulation. 2000;101(23).
Rieke N, Hancox J, Li W, Milletarì F, Roth HR, Albarqouni S, Bakas S, Galtier MN, Landman BA, Maier-Hein K, Ourselin S, Sheller M, Summers RM, Trask A, Xu D, Baust M, Cardoso MJ. The future of digital health with federated learning. NPJ Digit Med. 2020;3:119.
Kaissis GA, Makowski MR, Rueckert D, Braren RF. Secure, privacy-preserving and federated machine learning in medical imaging. Nat Mach Intell. 2020;2:305–11.
Puyol-Antón E, Ruijsink B, Harana JM, Piechnik SK, Neubauer S, Petersen SE, Razavi R, Chowienczyk P, King AP. Fairness in cardiac magnetic resonance imaging: Assessing sex and racial bias in deep learning-based segmentation. Front. Cardiovasc. Med., Sec. Cardiovascular Imaging Volume 9 – 2022 (https://doi.org/10.3389/fcvm.2022.859310)
Noseworthy PA, Attia ZI, Brewer LC, Hayes SN, Yao X, Kapa S, Friedman PA, Lopez-Jimenez F. Assessing and mitigating bias in medical artificial intelligence: The effects of race and ethnicity on a deep learning model for ECG analysis. Circ Arrhythmia Electrophysiol. 2020;13(3).
ACDC challenge website. https://www.creatis.insa-lyon.fr/Challenge/acdc/.
Dey D, Slomka PJ, Leeson P, Comaniciu D, Shrestha S, Sengupta PP, Marwick TH. Artificial intelligence in cardiovascular imaging: JACC state-of-the-art review. J Am College Cardiol. 2019;73(11):1317–35.
Fenech ME, Buston O. AI in cardiac imaging: A UK-based perspective on addressing the ethical, social, and political challenges. Front Cardiovasc Med. 2020;7(54).
Petersen SE, Abdulkareem M, Leiner T. Artificial intelligence will transform cardiac imaging-opportunities and challenges. Front Cardiovasc Med. 2019;6:133.
Seetharam K, Brito D, Farjo PD, Sengupta PP. The role of artificial intelligence in cardiovascular imaging: State of the art review. Front Cardiovasc Med. 2020;7:374.
Acknowledgements
ND was supported by the French ANR (LABEX PRIMES of Univ. Lyon [ANR-11-LABX-0063] within the program “Investissements d’Avenir” [ANR-11-IDEX-0007], and the JCJC project “MIC-MAC” [ANR-19-CE45-0005]).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
5.1 Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
Copyright information
© 2023 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this chapter
Cite this chapter
Rueckert, D., Knolle, M., Duchateau, N., Razavi, R., Kaissis, G. (2023). Diagnosis. In: Duchateau, N., King, A.P. (eds) AI and Big Data in Cardiology. Springer, Cham. https://doi.org/10.1007/978-3-031-05071-8_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-05071-8_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05070-1
Online ISBN: 978-3-031-05071-8
eBook Packages: MedicineMedicine (R0)