Skip to main content

Using Book Dialogues to Extract Emotions from Texts

  • Conference paper
  • First Online:
Human Language Technology. Challenges for Computer Science and Linguistics (LTC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13212))

Included in the following conference series:

  • 391 Accesses

Abstract

Detecting emotions from a text can be challenging, especially if we do not have any annotated corpus. We propose to use book dialogue lines and accompanying phrases to obtain utterances annotated with emotion vectors. We describe two different methods of achieving this goal. Then we use neural networks to train models that assign a vector representing emotions for each utterance. These solutions do not need any corpus of texts annotated explicitly with emotions because information about emotions for training data is extracted from dialogues’ reporting clauses. We compare the performance of both solutions with other emotion detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Distributional models for Polish (2021). http://dsmodels.nlp.ipipan.waw.pl. Accessed 15 Oct 2021

  2. Wolne Lektury. About the project (2021). https://wolnelektury.pl/info/oprojekcie. Accessed 15 Oct 2021

  3. Abdaoui, A., Azé, J., Bringay, S., Poncelet, P.: FEEL: a French expanded emotion lexicon. Lang. Resour. Eval. 51(3), 833–855 (2017)

    Google Scholar 

  4. Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp. 579–586. Association for Computational Linguistics, Vancouver (2005)

    Google Scholar 

  5. Aman, S., Szpakowicz, S.: Identifying expressions of emotion in text. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 196–205. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74628-7_27

    Chapter  Google Scholar 

  6. Auracher, J., Albers, S., Zhai, Y., Gareeva, G., Stavniychuk, T.: P is for happiness, N is for sadness: universals in sound iconicity to detect emotions in poetry. Discourse Process. 48(1), 1–25 (2010)

    Article  Google Scholar 

  7. Cambria, E., Livingstone, A., Hussain, A.: The hourglass of emotions. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Müller, V.C. (eds.) Cognitive Behavioural Systems. LNCS, vol. 7403, pp. 144–157. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34584-5_11

    Chapter  Google Scholar 

  8. De Bruyne, L., De Clercq, O., Hoste, V.: LT3 at SemEval-2018 task 1: a classifier chain to detect emotions in tweets. In: Proceedings of The 12th International Workshop on Semantic Evaluation (SemEval-2018), pp. 123–127. Association for Computational Linguistics (2018). http://aclweb.org/anthology/S18-1016

  9. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805

  10. Dybala, P., Yatsu, M., Ptaszynski, M., Rzepka, R., Araki, K.: Towards joking, humor sense equipped and emotion aware conversational systems. In: Advances in Affective and Pleasurable Design, Advances in Intelligent Systems and Computing, vol. 483, pp. 657–669. Springer (2017). https://doi.org/10.1007/978-3-319-41661-8_64

  11. Ekman, P.: An argument for basic emotions. Cognit. Emot. 6(3–4), 169–200 (1992)

    Article  Google Scholar 

  12. Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019–1027 (2016)

    Google Scholar 

  13. Gil, G.B., de Jesús, A.B., Lopéz, J.M.M.: Combining machine learning techniques and natural language processing to infer emotions using Spanish Twitter corpus. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 149–157. Springer (2013)

    Google Scholar 

  14. Gill, A.J., French, R.M., Gergle, D., Oberlander, J.: Identifying emotional characteristics from short blog texts. In: 30th Annual Conference of the Cognitive Science Society, pp. 2237–2242. Cognitive Science Society Washington, DC (2008)

    Google Scholar 

  15. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  16. Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics, p. 1367. Association for Computational Linguistics (2004)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: The International Conference on Learning Representations (ICLR), San Diego (2015)

    Google Scholar 

  18. Kubis, M.: Quantitative analysis of character networks in Polish XIX and XX century novels. paper presented (2019)

    Google Scholar 

  19. Metze, F., Batliner, A., Eyben, F., Polzehl, T., Schuller, B., Steidl, S.: Emotion recognition using imperfect speech recognition. In: Eleventh Annual Conference of the International Speech Communication Association (2010)

    Google Scholar 

  20. Mohammad, S.: #Emotional tweets. In: *SEM 2012: The First Joint Conference on Lexical and Computational Semantics - Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp. 246–255. Association for Computational Linguistics, Montréal, Canada, 7–8 June 2012. http://www.aclweb.org/anthology/S12-1033

  21. Mohammad, S.M.: Sentiment analysis: detecting valence, emotions, and other affectual states from text. In: Meiselman, H. (ed.) Emotion Measurement, pp. 201–237. Elsevier (2016)

    Google Scholar 

  22. Mohammad, S.M., Bravo-Marquez, F.: Emotion intensities in tweets. In: Proceedings of the Sixth Joint Conference on Lexical and Computational Semantics (*Sem). Vancouver, Canada (2017)

    Google Scholar 

  23. Mroczkowski, R., Rybak, P., Wróblewska, A., Gawlik, I.: HerBERT: efficiently pretrained transformer-based language model for Polish. In: Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing. pp. 1–10. Association for Computational Linguistics, Kiyv, Ukraine, April 2021. https://www.aclweb.org/anthology/2021.bsnlp-1.1

  24. Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10, pp. 1320–1326 (2010)

    Google Scholar 

  25. Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)

    Article  Google Scholar 

  26. Plutchik, R.: A general psychoevolutionary theory of emotion. In: Theories of emotion, pp. 3–33. Elsevier (1980)

    Google Scholar 

  27. Ptaszynski, M., Dybala, P., Rzepka, R., Araki, K., Masui, F.: ML-Ask: Open source affect analysis software for textual input in Japanese. J. Open Res. Softw. 5(1), 1–16 (2017)

    Google Scholar 

  28. Řehůřek, R., Sojka, P.: software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, Malta, May 2010. http://is.muni.cz/publication/884893/en

  29. Reyes, A., Rosso, P., Buscaldi, D.: From humor recognition to irony detection: the figurative language of social media. Data Knowl. Eng. 74, 1–12 (2012)

    Article  Google Scholar 

  30. Strapparava, C., Mihalcea, R.: SemEval-2007 task 14: affective text. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007), pp. 70–74. Prague, June 2007

    Google Scholar 

  31. Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)

    Google Scholar 

  32. Yuan, Z., Purver, M.: Predicting emotion labels for Chinese microblog texts. In: Gaber, M., et al. (eds.) Advances in Social Media Analysis. Studies in Computational Intelligence, vol. 602, pp. 129–149. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18458-6_7

    Chapter  Google Scholar 

  33. Zaśko-Zielińska, M., Piasecki, M., Szpakowicz, S.: A large wordnet-based sentiment lexicon for Polish. In: Angelova, G., Bontcheva, K., Mitkov, R. (eds.) International Conference Recent Advances in Natural Language Processing. Proceedings, pp. 721–730. Hissar, Bulgaria (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paweł Skórzewski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Skórzewski, P. (2022). Using Book Dialogues to Extract Emotions from Texts. In: Vetulani, Z., Paroubek, P., Kubis, M. (eds) Human Language Technology. Challenges for Computer Science and Linguistics. LTC 2019. Lecture Notes in Computer Science(), vol 13212. Springer, Cham. https://doi.org/10.1007/978-3-031-05328-3_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05328-3_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05327-6

  • Online ISBN: 978-3-031-05328-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics