Abstract
Detecting emotions from a text can be challenging, especially if we do not have any annotated corpus. We propose to use book dialogue lines and accompanying phrases to obtain utterances annotated with emotion vectors. We describe two different methods of achieving this goal. Then we use neural networks to train models that assign a vector representing emotions for each utterance. These solutions do not need any corpus of texts annotated explicitly with emotions because information about emotions for training data is extracted from dialogues’ reporting clauses. We compare the performance of both solutions with other emotion detection algorithms.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Distributional models for Polish (2021). http://dsmodels.nlp.ipipan.waw.pl. Accessed 15 Oct 2021
Wolne Lektury. About the project (2021). https://wolnelektury.pl/info/oprojekcie. Accessed 15 Oct 2021
Abdaoui, A., Azé, J., Bringay, S., Poncelet, P.: FEEL: a French expanded emotion lexicon. Lang. Resour. Eval. 51(3), 833–855 (2017)
Alm, C.O., Roth, D., Sproat, R.: Emotions from text: machine learning for text-based emotion prediction. In: Proceedings of the Human Language Technology Conference and Conference on Empirical Methods in Natural Language Processing, pp. 579–586. Association for Computational Linguistics, Vancouver (2005)
Aman, S., Szpakowicz, S.: Identifying expressions of emotion in text. In: Matoušek, V., Mautner, P. (eds.) TSD 2007. LNCS (LNAI), vol. 4629, pp. 196–205. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74628-7_27
Auracher, J., Albers, S., Zhai, Y., Gareeva, G., Stavniychuk, T.: P is for happiness, N is for sadness: universals in sound iconicity to detect emotions in poetry. Discourse Process. 48(1), 1–25 (2010)
Cambria, E., Livingstone, A., Hussain, A.: The hourglass of emotions. In: Esposito, A., Esposito, A.M., Vinciarelli, A., Hoffmann, R., Müller, V.C. (eds.) Cognitive Behavioural Systems. LNCS, vol. 7403, pp. 144–157. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-34584-5_11
De Bruyne, L., De Clercq, O., Hoste, V.: LT3 at SemEval-2018 task 1: a classifier chain to detect emotions in tweets. In: Proceedings of The 12th International Workshop on Semantic Evaluation (SemEval-2018), pp. 123–127. Association for Computational Linguistics (2018). http://aclweb.org/anthology/S18-1016
Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805
Dybala, P., Yatsu, M., Ptaszynski, M., Rzepka, R., Araki, K.: Towards joking, humor sense equipped and emotion aware conversational systems. In: Advances in Affective and Pleasurable Design, Advances in Intelligent Systems and Computing, vol. 483, pp. 657–669. Springer (2017). https://doi.org/10.1007/978-3-319-41661-8_64
Ekman, P.: An argument for basic emotions. Cognit. Emot. 6(3–4), 169–200 (1992)
Gal, Y., Ghahramani, Z.: A theoretically grounded application of dropout in recurrent neural networks. In: Advances in Neural Information Processing Systems, pp. 1019–1027 (2016)
Gil, G.B., de Jesús, A.B., Lopéz, J.M.M.: Combining machine learning techniques and natural language processing to infer emotions using Spanish Twitter corpus. In: International Conference on Practical Applications of Agents and Multi-Agent Systems, pp. 149–157. Springer (2013)
Gill, A.J., French, R.M., Gergle, D., Oberlander, J.: Identifying emotional characteristics from short blog texts. In: 30th Annual Conference of the Cognitive Science Society, pp. 2237–2242. Cognitive Science Society Washington, DC (2008)
Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)
Kim, S.M., Hovy, E.: Determining the sentiment of opinions. In: Proceedings of the 20th International Conference on Computational Linguistics, p. 1367. Association for Computational Linguistics (2004)
Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: The International Conference on Learning Representations (ICLR), San Diego (2015)
Kubis, M.: Quantitative analysis of character networks in Polish XIX and XX century novels. paper presented (2019)
Metze, F., Batliner, A., Eyben, F., Polzehl, T., Schuller, B., Steidl, S.: Emotion recognition using imperfect speech recognition. In: Eleventh Annual Conference of the International Speech Communication Association (2010)
Mohammad, S.: #Emotional tweets. In: *SEM 2012: The First Joint Conference on Lexical and Computational Semantics - Volume 1: Proceedings of the main conference and the shared task, and Volume 2: Proceedings of the Sixth International Workshop on Semantic Evaluation (SemEval 2012), pp. 246–255. Association for Computational Linguistics, Montréal, Canada, 7–8 June 2012. http://www.aclweb.org/anthology/S12-1033
Mohammad, S.M.: Sentiment analysis: detecting valence, emotions, and other affectual states from text. In: Meiselman, H. (ed.) Emotion Measurement, pp. 201–237. Elsevier (2016)
Mohammad, S.M., Bravo-Marquez, F.: Emotion intensities in tweets. In: Proceedings of the Sixth Joint Conference on Lexical and Computational Semantics (*Sem). Vancouver, Canada (2017)
Mroczkowski, R., Rybak, P., Wróblewska, A., Gawlik, I.: HerBERT: efficiently pretrained transformer-based language model for Polish. In: Proceedings of the 8th Workshop on Balto-Slavic Natural Language Processing. pp. 1–10. Association for Computational Linguistics, Kiyv, Ukraine, April 2021. https://www.aclweb.org/anthology/2021.bsnlp-1.1
Pak, A., Paroubek, P.: Twitter as a corpus for sentiment analysis and opinion mining. In: LREc, vol. 10, pp. 1320–1326 (2010)
Pang, B., Lee, L., et al.: Opinion mining and sentiment analysis. Found. Trends Inf. Retr. 2(1–2), 1–135 (2008)
Plutchik, R.: A general psychoevolutionary theory of emotion. In: Theories of emotion, pp. 3–33. Elsevier (1980)
Ptaszynski, M., Dybala, P., Rzepka, R., Araki, K., Masui, F.: ML-Ask: Open source affect analysis software for textual input in Japanese. J. Open Res. Softw. 5(1), 1–16 (2017)
Řehůřek, R., Sojka, P.: software framework for topic modelling with large corpora. In: Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks, pp. 45–50. ELRA, Valletta, Malta, May 2010. http://is.muni.cz/publication/884893/en
Reyes, A., Rosso, P., Buscaldi, D.: From humor recognition to irony detection: the figurative language of social media. Data Knowl. Eng. 74, 1–12 (2012)
Strapparava, C., Mihalcea, R.: SemEval-2007 task 14: affective text. In: Proceedings of the 4th International Workshop on Semantic Evaluations (SemEval-2007), pp. 70–74. Prague, June 2007
Vaswani, A., et al.: Attention is all you need. In: Advances in Neural Information Processing Systems, pp. 5998–6008 (2017)
Yuan, Z., Purver, M.: Predicting emotion labels for Chinese microblog texts. In: Gaber, M., et al. (eds.) Advances in Social Media Analysis. Studies in Computational Intelligence, vol. 602, pp. 129–149. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-18458-6_7
Zaśko-Zielińska, M., Piasecki, M., Szpakowicz, S.: A large wordnet-based sentiment lexicon for Polish. In: Angelova, G., Bontcheva, K., Mitkov, R. (eds.) International Conference Recent Advances in Natural Language Processing. Proceedings, pp. 721–730. Hissar, Bulgaria (2015)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Skórzewski, P. (2022). Using Book Dialogues to Extract Emotions from Texts. In: Vetulani, Z., Paroubek, P., Kubis, M. (eds) Human Language Technology. Challenges for Computer Science and Linguistics. LTC 2019. Lecture Notes in Computer Science(), vol 13212. Springer, Cham. https://doi.org/10.1007/978-3-031-05328-3_16
Download citation
DOI: https://doi.org/10.1007/978-3-031-05328-3_16
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05327-6
Online ISBN: 978-3-031-05328-3
eBook Packages: Computer ScienceComputer Science (R0)