Skip to main content

Retinal Viewfinder: Preliminary Study of Retinal Projection-Based Electric Viewfinder for Camera Devices

  • Conference paper
  • First Online:
Human-Computer Interaction. Technological Innovation (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13303))

Included in the following conference series:

Abstract

This paper presents a prototype of a new type of electronic viewfinder (EVF) that uses a retinal projection system. A viewfinder that enables users to preview an image is one of the characteristics and important interfaces of a camera. However, people who require glasses or contact lenses face a problem when using a viewfinder as they cannot see the image easily. In the retinal projection system, a large depth of field projection will enable users to focus on the displayed image easily. To investigate the above hypothesis, we compared the existing EVF with the proposed method from the perspective of ease of focusing on subjects. The user study employed a person with bad eyesight who uses a visual aid. Experimental results indicate that in certain situations, the proposed method has an advantage in focusing when users look through the viewfinder without glasses or contact lenses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.edmundoptics.com/p/ieee-reflection-target/11533/ (last accessed Feb. 11, 2022).

  2. 2.

    https://eyeportal.jp/60siryokukensa/siryokukennsa.html (last accessed Feb. 11, 2022, in Japanese).

References

  1. Andre, D.L.J.E.: Verifier finder system for reflex camera. US Patent 2,887,019, 19 May 1959

    Google Scholar 

  2. Aoki, T.: Electronic viewfinder. US Patent 5,164,833, 17 November 1992

    Google Scholar 

  3. Arpad, B.: Photographic camera. US Patent 1,998,568, 23 April 1935

    Google Scholar 

  4. Bister, D., Mordarai, F., Aveling, R.M.: Comparison of 10 digital SLR cameras for orthodontic photography. J. Orthod. 33(3), 223–230 (2006). https://doi.org/10.1179/146531205225021687, pMID: 16926316

  5. Brault, B., Hoskinson, J., Armbrust, L., Milliken, G.: Comparison of seven digital cameras for digitizing radiographs. Vet. Radiol. Ultrasound 45(4), 298–304 (2004)

    Article  Google Scholar 

  6. Brown, S.: Direct-view finder for cameras. US Patent 1,140,108, 18 May 1915

    Google Scholar 

  7. Jang, C., Bang, K., Li, G., Lee, B.: Holographic near-eye display with expanded eye-box. ACM Trans. Graph. 37(6), 195:1–195:14 (2018). https://doi.org/10.1145/3272127.3275069

  8. Jang, C., Bang, K., Moon, S., Kim, J., Lee, S., Lee, B.: Retinal 3D: augmented reality near-eye display via pupil-tracked light field projection on retina. ACM Trans. Graph. 36(6) (2017). https://doi.org/10.1145/3130800.3130889

  9. Kamiya, M.: Digital camera diopter adjustment loupe hooded (2010). jP3159548U

    Google Scholar 

  10. Kato, S.: Real image mode variable magnification finder optical system. US Patent 5,323,264, 21 June 1994

    Google Scholar 

  11. Kim, H., et al.: MARIO: mid-air augmented RealityInteraction with objects. In: Reidsma, D., Katayose, H., Nijholt, A. (eds.) ACE 2013. LNCS, vol. 8253, pp. 560–563. Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03161-3_53

    Chapter  Google Scholar 

  12. Kollin, J.S.: A retinal display for virtual-environment applications (1993)

    Google Scholar 

  13. Koyama, T., Yamazaki, S.: Viewfinder device. US Patent 5,640,632, 17 June 1997

    Google Scholar 

  14. Liao, C.D., Tsai, J.C.: The evolution of mems displays. IEEE Trans. Industr. Electron. 56(4), 1057–1065 (2009). https://doi.org/10.1109/TIE.2008.2005684

  15. Makino, Y., Furuyama, Y., Inoue, S., Shinoda, H.: Haptoclone (haptic-optical clone) for mutual tele-environment by real-time 3D image transfer with midair force feedback. In: Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems. CHI 2016, pp. 1980–1990. ACM, New York (2016). https://doi.org/10.1145/2858036.2858481

  16. Mott, M.E., Jane, E., Bennett, C.L., Cutrell, E., Morris, M.R.: Understanding the accessibility of smartphone photography for people with motor impairments. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. CHI 2018, pp. 520:1–520:12. ACM, New York (2018). https://doi.org/10.1145/3173574.3174094

  17. Nakao, S.: Hybrid finder (1990). jP2691050B2

    Google Scholar 

  18. Ochiai, Y., et al.: Make your own retinal projector: retinal near-eye displays via metamaterials. In: ACM SIGGRAPH 2018 Emerging Technologies. SIGGRAPH 2018, pp. 13:1–13:2. ACM, New York (2018). https://doi.org/10.1145/3214907.3214910

  19. Ohmura, H., Ushiro, S., Hara, H., Asano, S., Yoshida, T.: Lens-fitted photographic film package. US Patent 4,855,774, 8 August 1989

    Google Scholar 

  20. Onoyama, Y., et al.: 70.4l: late-news paper: 0.5-inch XGA micro-oled display on a silicon backplane with high-definition technologies. In: SID Symposium Digest of Technical Papers, vol. 43, no. 1, pp. 950–953 (2012). https://doi.org/10.1002/j.2168-0159.2012.tb05947.x

  21. Otao, K., Itoh, Y., Osone, H., Takazawa, K., Kataoka, S., Ochiai, Y.: Light field blender: designing optics and rendering methods for see-through and aerial near-eye display. In: SIGGRAPH Asia 2017 Technical Briefs. SA 2017, pp. 9:1–9:4. ACM, New York (2017). https://doi.org/10.1145/3145749.3149425

  22. Otao, K., Itoh, Y., Takazawa, K., Osone, H., Ochiai, Y.: Air mounted eyepiece: optical see-through HMD design with aerial optical functions. In: Proceedings of the 9th Augmented Human International Conference. AH 2018, pp. 1:1–1:7. ACM, New York (2018). https://doi.org/10.1145/3174910.3174911

  23. Pech-Pacheco, J.L., Cristobal, G., Chamorro-Martinez, J., Fernandez-Valdivia, J.: Diatom autofocusing in brightfield microscopy: a comparative study. In: Proceedings 15th International Conference on Pattern Recognition. ICPR-2000, vol. 3, pp. 314–317 (2000). https://doi.org/10.1109/ICPR.2000.903548

  24. Roth, H.L., Lora, A.N., Heilman, K.M.: Effects of monocular viewing and eye dominance on spatial attention. Brain 125(9), 2023–2035 (2002). https://doi.org/10.1093/brain/awf210

    Article  Google Scholar 

  25. Sistrom, C., Gay, S.: Digital cameras for reproducing radiologic images: evaluation of three cameras. AJR Am. J. Roentgenol. 170(2), 279–284 (1998)

    Article  Google Scholar 

  26. Stempeck, J.W.: Electronic viewfinder. US Patent 4,571,627, 18 February 1986

    Google Scholar 

  27. Ueda, H., Hisamitsu, A., Kitahora, T., Terasaka, Y., Furukawa, K.: Organic electroluminescent display element, finder screen display device, finder and optical device. US Patent 6,468,676, 22 October 2002

    Google Scholar 

  28. Weissman, P., Handschy, M.A.: Compact electronic viewfinder. US Patent 7,206,134, 17 April 2007

    Google Scholar 

  29. Yahagi, Y., Fukushima, S., Sakaguchi, S., Naemura, T.: Suppression of floating image degradation using a mechanical vibration of a dihedral corner reflector array. Opt. Express 28(22), 33145–33156 (2020). https://doi.org/10.1364/OE.406005

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by JST CREST Grant Number JPMJCR19F2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ippei Suzuki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Suzuki, I., Itoh, Y., Ochiai, Y. (2022). Retinal Viewfinder: Preliminary Study of Retinal Projection-Based Electric Viewfinder for Camera Devices. In: Kurosu, M. (eds) Human-Computer Interaction. Technological Innovation. HCII 2022. Lecture Notes in Computer Science, vol 13303. Springer, Cham. https://doi.org/10.1007/978-3-031-05409-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05409-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05408-2

  • Online ISBN: 978-3-031-05409-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics