Skip to main content

A Swarm Intelligence Approach: Combination of Different EEG-Channel Optimization Techniques to Enhance Emotion Recognition

  • Conference paper
  • First Online:
Human-Computer Interaction. Technological Innovation (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13303))

Included in the following conference series:

  • 1992 Accesses

Abstract

This paper describes well-known classification techniques which are evaluated for emotion classification. The aim of this work is the comparison of different channel selection techniques to achieve fast computation for electroencephalogram (EEG) data. Swarm intelligence algorithms belong to the class of nature-inspired algorithms which are very useful in achieving high accuracies while reducing the computing cost. In this paper different channel optimization techniques are compared to each other. They are applied to the DEAP dataset to find the most suitable channels in the context of emotion recognition. For channel selection, principal component analysis (PCA), maximum relevance-minimum redundancy (mRMR), particle swarm optimization (PSO), cuckoo search (CS) and grey wolf optimization (GWO) were investigated. By applying these optimization algorithms, the number of EEG channels could be reduced from 32 to 20 while the accuracy remained nearly the same. The proposed optimizations techniques saved between two- and seven-hours of computing time in training the Bidirectional Long Short-Term Memory model to classify emotions, while the computing time without channel selection took 18 h. Among these algorithms, mRMR and CS obtained the most promising results. By using mRMR a total computing time of 11 h with an accuracy of 92.74% for arousal and 92.36% for valence was achieved. For CS a total computing time of 15 h was achieved, with an accuracy of 93.33% for arousal and 93.67% for valence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Jasper, H.: Report of the committee on methods of clinical examination in electroencephalography. The ten-twenty electrode system of the International Federation. Electroencephalography Clin. Neurophysiol. 10, 370–375 (1958). https://doi.org/10.1016/0013-4694(58)90053-1

  2. Nuwer, M.R.: 10–10 electrode system for EEG recording. Clin. Neurophysiol. Offic. J. Int. Fed. Clin. Neurophysiol. 129, 1103 (2018). https://doi.org/10.1016/j.clinph.2018.01.065

    Article  Google Scholar 

  3. Silva, J., Burgos, F., Shin-Ting, W.: Interactive visualization of the cranio-cerebral correspondences for 10/20, 10/10 and 10/5 systems. In: 2016 29th SIBGRAPI Conference on Graphics, Patterns and Images - SIBGRAPI 2016, pp. 424–431 (2017)

    Google Scholar 

  4. Torres-García, A.A., Reyes-García, C.A., Villaseñor-Pineda, L., García-Aguilar, G.: Implementing a fuzzy inference system in a multi-objective EEG channel selection model for imagined speech classification. Expert Syst. Appl. 59, 1–12 (2016). https://doi.org/10.1016/j.eswa.2016.04.011

    Article  Google Scholar 

  5. He, L., Hu, Y., Li, Y., Li, D.: Channel selection by Rayleigh coefficient maximization based genetic algorithm for classifying single-trial motor imagery EEG. Neurocomputing 121, 423–433 (2013). https://doi.org/10.1016/j.neucom.2013.05.005

    Article  Google Scholar 

  6. Alotaiby, T., El-Samie, F.E.A., Alshebeili, S.A., Ahmad, I.: A review of channel selection algorithms for EEG signal processing. EURASIP J. Adv. Sig. Process. 2015(1), 1–21 (2015). https://doi.org/10.1186/s13634-015-0251-9

    Article  Google Scholar 

  7. Rizon, M., Murugappan, R., Nagarajan, R., Yacoob, S.: Asymmetric ratio and FCM based salient channel selection for human emotion detection using EEG. WSEAS Trans. Signal Process. 4, 596–603 (2008)

    Google Scholar 

  8. Jatupaiboon, N., Pan-ngum, S., Israsena, P.: Emotion classification using minimal EEG channels and frequency bands. In: Proceedings of 10th International Joint Conference on Computer Science and Software Engineering (JCSSE 2013) (Khon Kaen, Thailand, 2013), vol. (2013)

    Google Scholar 

  9. Ansari-Asl, K., Chanel, G., Pun, T.: A channel selection method for EEG classification in emotion assessment based on synchronization likelihood. In: 15th European Signal Processing Conference (EUSIPCO 2007), Poznan, Poland, 3–7 September 2007 (2007)

    Google Scholar 

  10. Yildirim, E., Kaya, Y., Kilic, F.: A channel selection method for emotion recognition from EEG based on swarm-intelligence algorithms. IEEE Access 9, 109889–109902 (2021). https://doi.org/10.1109/ACCESS.2021.3100638

    Article  Google Scholar 

  11. Wang, Z., Hu, S., Liu, G., Song, H.: Channel selection method based on CNNSE for EEG emotion recognition. In: Proceedings of IEEE 14th International Conference on Intelligent Systems and Knowledge Engineering (ISKE 2019). (2019)

    Google Scholar 

  12. Wang, Z., Hu, S., Song, H.: Channel selection method for EEG emotion recognition using normalized mutual information. IEEE Access 7, 143303–143311 (2019). https://doi.org/10.1109/ACCESS.2019.2944273

    Article  Google Scholar 

  13. Pane, E., Wibawa, A., Purnomo, M.: Channel selection of EEG emotion recognition using stepwise discriminant analysis. In: International Conference on Computer Engineering, Network and Intelligent Multimedia (CENIM) (2018)

    Google Scholar 

  14. Al-Qazzaz, N., Sabir, M., Ali, S., Ahmad, S., Grammer, K.: Effective EEG channels for emotion identification over the brain regions using differential evolution algorithm. In: 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 4703–4706 (2019)

    Google Scholar 

  15. Tong, L., Zhao, J., Fu, W.: Emotion recognition and channel selection based on EEG signal. In: 2018 11th International Conference on Intelligent Computation Technology and Automation (ICICTA), 101–105 (2018). https://doi.org/10.1109/ICICTA.2018.00031

  16. Zhao, C., et al.: F-score based EEG channel selection methods for emotion recognition. In: 2020 IEEE International Conference on E-health Networking, Application & Services (HEALTHCOM) (2021)

    Google Scholar 

  17. Xu, H., Wang, X., Li, W., Wang, H., Bi, Q.: Research on EEG channel selection method for emotion recognition. In: Proceeding of the IEEE International Conference on Robotics and Biomimetics. Dali, China, December 2019 (2019)

    Google Scholar 

  18. Koelstra, S., et al.: DEAP: a database for emotion analysis; using physiological signals. IEEE Trans. Affect. Comput. 3, 18–31 (2012). https://doi.org/10.1109/T-AFFC.2011.15

    Article  Google Scholar 

  19. Jolliffe, I.T.: Principal Component Analysis. Springer Series in Statistics. Springer, New York (2002). https://doi.org/10.1007/b98835

  20. Naik, G.R.: Advances in Principal Component Analysis. Springer, Singapore (2018). https://doi.org/10.1007/978-981-10-6704-4

  21. Peng, H., Long, F., Ding, C.: Feature selection based on mutual information: criteria of max-dependency, max-relevance, and min-redundancy. IEEE Trans. Pattern Anal. Machine Intell. 27, 1226–1238 (2005). https://doi.org/10.1109/tpami.2005.159

    Article  Google Scholar 

  22. Ramírez-Gallego, S., et al.: Fast-mRMR: fast minimum redundancy maximum relevance algorithm for high-dimensional big data. Int. J. Intell. Syst. 32, 134–152 (2017). https://doi.org/10.1002/int.21833

    Article  Google Scholar 

  23. Tang, J., Liu, G., Pan, Q.: A review on representative swarm intelligence algorithms for solving optimization problems: applications and trends. IEEE/CAA J. Autom. Sinica 8, 1627–1643 (2021). https://doi.org/10.1109/JAS.2021.1004129

    Article  MathSciNet  Google Scholar 

  24. Carbas, S., Toktas, A., Ustun, D.: Nature-Inspired Metaheuristic Algorithms for Engineering Optimization Applications. Springer, Singapore (2021). https://doi.org/10.1007/978-981-33-6773-9

  25. Yang, X.-S. (ed.): Cuckoo Search and Firefly Algorithm. SCI, vol. 516. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-02141-6

    Book  MATH  Google Scholar 

  26. Nature-Inspired Computation and Swarm Intelligence, vol.. Elsevier (2020)

    Google Scholar 

  27. Ali, M., El-Hameed, M.A., Farahat, M.A.: Effective parameters’ identification for polymer electrolyte membrane fuel cell models using grey wolf optimizer. Renew. Energy 111, 455–462 (2017). https://doi.org/10.1016/j.renene.2017.04.036

    Article  Google Scholar 

  28. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161–1178 (1980). https://doi.org/10.1037/h0077714

    Article  Google Scholar 

  29. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9, 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  30. Acharya, D., et al.: Multi-class emotion classification using EEG signals. In: Garg, D., Wong, K., Sarangapani, J., Gupta, S.K. (eds.) IACC 2020. CCIS, vol. 1367, pp. 474–491. Springer, Singapore (2021). https://doi.org/10.1007/978-981-16-0401-0_38

    Chapter  Google Scholar 

  31. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  32. Jingwei, T.: Wrapper-Feature-Selection-Toolbox-Python. GitHub. GitHub repository, (2021)

    Google Scholar 

  33. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sabahudin Balic or Lukas Kleybolte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Balic, S., Kleybolte, L., Märtin, C. (2022). A Swarm Intelligence Approach: Combination of Different EEG-Channel Optimization Techniques to Enhance Emotion Recognition. In: Kurosu, M. (eds) Human-Computer Interaction. Technological Innovation. HCII 2022. Lecture Notes in Computer Science, vol 13303. Springer, Cham. https://doi.org/10.1007/978-3-031-05409-9_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05409-9_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05408-2

  • Online ISBN: 978-3-031-05409-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics