Abstract
In the paper, we analyze the current opportunities and limitations of emotion recognition in real-life situations via mainstream smartwatches (e.g. Apple Watch™). We have identified and taken into account specific real-life situations capable to be recognized by a smartwatch app, where emotion articulation will be superimposed by physiological reactions of the human body. If not handled, such situation would result in misinterpreted emotions. Unfortunately, only one dimension of emotion, tension resp. stress, today can be securely recognized by mainstream smartwatches and only for more strong emotion articulations. To pave the way for the recognition of the other motion dimensions, arousal and valence, we propose a new test scenario, watching soccer games, as an internationally useable, highly scalable and extensively automatable test field. Only with broader experiments in this proposed field the targeted progress in emotion recognition by mainstream smartwatches will be achievable.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Wijasena, H.Z., Ferdiana, R., Wibirama, S.: A survey of emotion recognition using physiological signal in wearable devices. In: AIMS - International Conference on Artificial Intelligence and Mechatronics Systems, IEEE 2021, pp. 1–6 (2021). https://doi.org/10.1109/AIMS52415.2021.9466092
Egger, M., Ley, M., Hanke, S.: Emotion recognition from physiological signal analysis: a review. Electron. Notes Theoret. Comput. Sci. 343, 35–55 (2019). https://doi.org/10.1016/j.entcs.2019.04.009
Saganowski, S., Dutkowiak, A., Dziadek, A., et al.: Emotion recognition using wearables: a systematic literature review-work-in-progress. In: IEEE International Conference on Pervasive Computing and Communications (PERCOM) Workshops. IEEE (2020). https://doi.org/10.1109/PerComWorkshops48775.2020.9156096
Hui, T.K.L., Sherrat, R.S.: Coverage of emotion recognition for common wearable biosensors. Biosensors 8(2), 1–19 (2018). MDPI, https://doi.org/10.3390/bios8020030
Pollreisz, D., TaheriNejad, N.: A simple algorithm for emotion recognition, using physiological signals of a smart watch. In: Annual International Conference IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2353–2356 (2017). https://doi.org/10.1109/EMBC.2017.8037328
Beckmann, N.: Photoplethysmographie-basierte Messung der Pulswellenlaufzeit für die Emotionserkennung, dissertation (in German), University Essen-Duisburg 2019, pp. 1–160
Satamaria-Granados, L., Mendoza-Moreno, J.F., Ramirez-Gonzalez, G.: Tourist recommender systems based on emotion recognition – a scientometric rewiew. Future Internet 13(2), 1–37 (2021). https://doi.org/10.3390/fi13010002
Torrado, J.C., Montoro, G., Gomez, J.: The potential of smartwatches for emotional self-regulation for people with autism spectrum disorder. In: Proceedings of the 9th International Joint Conference on Biomedical Engineering Systems and Technologies, vol. 5, SCITEPRESS, pp. 444–449 (2016). https://doi.org/10.5220/0005818104440449
Lutze, R., Waldhör, K.: Model based dialogue control for smartwatches. In: Kurosu, M. (ed.) HCI 2017. LNCS, vol. 10272, pp. 225–239. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58077-7_18
Lutze, R., Waldhör, K.: Improving dialogue design and control for smartwatches by reinforcement learning based behavioral acceptance patterns. In: Kurosu, M. (ed.) HCII 2020. LNCS, vol. 12183, pp. 75–85. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49065-2_6
Lutze, R., Waldhör, K.: Personal health assistance for elderly people via smartwatch based motion analysis. In: IEEE International Conference on Healthcare Informatics (ICHI), pp. 124–133. IEEE (2017). https://doi.org/10.1109/ICHI.2017.79
Wundt, W.M.: Outlines of Psychology (in German). Engelmann Publishers, Leipzig (1896)
Reisenstein, R.: A structuralist reconstruction of wundt’s three-dimensional theory of emotion. In: Westmeyer, H. (ed.) The Structuralist Program in Psychology: Foundations and Applications, pp. 141–189. Hogrefe & Huber Publishers, Toronto, CN (1992)
Russell, J.A.: A circumplex modell of affect. J. Person. Soc. Psychol. 39(6), 1161–1178 (1980). https://doi.org/10.1037/h0077714
Ekman, P.: An argument for basic emotions. Cogn. Emot. 6(3/4), 169–200 (1992). https://doi.org/10.1080/02699939208411068
Liu, Z., Xu, A., Guo, Y., et al.: SEEMO: a computational approach to see emotions. In: Conference on Human Factors in Computing Systems (CHI), Montreal, CN, Paper 464, pp. 1–12, ACM (2018). https://doi.org/10.1145/3173574.3173938
Pal, S., Mukhopadhyay, S., Suryadevara, N.: Development and progress in sensors and technologies for human emotion recognition. MDPI Sens. 21(16), 1–21 (2021). https://doi.org/10.3390/s21165554
Shu, L., Xie, J., Yang, M., et al.: A review of emotion recognition using physiological signals. MDPI Sens. 18(7), 1–41 (12018). https://doi.org/10.3390/s18072074
Dzedzickis, A., Kaklauskas, A., Bucinskas, V.: Human emotion recognition: review of sensors and methods. MDPI Sens. 20(3), 1–40 (2020). https://doi.org/10.3390/s20030592
Zhao, M., Fadel, A., Katabi, D.: Emotion recognition using wireless signals. ACM Commun. 61(9), 91–100 (2018). https://doi.org/10.1145/3236621
Barold, S.S.: Willem Einthoven and the birth of clinical electrocardiography a hundred years ago. Cardiac Electrophysiol. Rev. 7, 99–104 (2003). https://doi.org/10.1023/A:1023667812925
NN: Working with the watchOS App Life Cycle, Developer Information, Apple Inc. https://developer.apple.com/documentation/watchkit/wkextensiondelegate/working_with_the_watchos_app_life_cycle. Accessed 5 Feb 2022
NN: Guide to Background Work, Android Developers, Google Inc. https://developer.android.com/guide/background. Accessed 5 Feb 2022
NN: User Defaults, Developer Information, Apple Inc. https://developer.apple.com/documentation/foundation/userdefaults. Accessed 5 Feb 2022
Lutze, R., Waldhör, K.: Integration of stationary and wearable support services for an actively assisted living of elderly people: capabilities, achievements, limitations, prospects—a case study. In: Wichert, R., Mand, B. (eds.) Ambient Assisted Living. ATSC, pp. 3–26. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52322-4_1
Larradet, F., Niewiadomski, R., Barresi, G., et al.: Towards emotion recognition from physiological signals in the wild: approaching the methodological issues in real-life data collection. Front. Psychol. 11(7), 1–23 (2020). Article 1111 https://doi.org/10.3389/fpsyg.2020.01111
Montesinos, V., Dell’Agnola, F., Arza, A. et al.: Multi-modal acute stress recognition using off-the-shelf wearable devices. In: Annual International Conference IEEE Engineering in Medicine and Biology Society (EMBC), pp. 2196–2201 (2019). https://doi.org/10.1109/EMBC.2019.8857130
Heinisch, J.S., Anderson, C., David, K.: Angry of climbing stars? Towards physiological emotion recognition in the wild. In: IEEE International Workshop on Emotion Awareness for Pervasive Computing with Mobile and wearable Devices, p. 486–491 (2019), DOI: https://doi.org/10.1109/PERCOMW.2019.8730725
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Lutze, R., Waldhör, K. (2022). Practical Suitability of Emotion Recognition from Physiological Signals by Mainstream Smartwatches. In: Kurosu, M. (eds) Human-Computer Interaction. Technological Innovation. HCII 2022. Lecture Notes in Computer Science, vol 13303. Springer, Cham. https://doi.org/10.1007/978-3-031-05409-9_28
Download citation
DOI: https://doi.org/10.1007/978-3-031-05409-9_28
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05408-2
Online ISBN: 978-3-031-05409-9
eBook Packages: Computer ScienceComputer Science (R0)