Skip to main content

Participatory Sensing Platform Concept for Wildlife Animals in the Himalaya Region, Nepal

  • Conference paper
  • First Online:
Distributed, Ambient and Pervasive Interactions. Smart Living, Learning, Well-being and Health, Art and Creativity (HCII 2022)

Abstract

Human Computer Biosphere Interaction (HCBI) is a relatively new academic discipline that acts as a critical juncture between the conservation biology and the Information, Communication and Technology (ICT). HCBI domain exploits the capabilities of the repertoire of available technological tools to remotely sense data from difficult geographical terrains in a secure and cost-effective manner. In this perspective paper, we highlight some of the bio-acoustic technologies that we have been using for our research in Fukushima prefecture, Japan. Learning from our experience in Fukushima, we provide our preliminary viewpoint on the possibility of incorporating HCBI research in Manang, Nepal. Our impressions are largely based on the site visit to Manang and informal interaction with locals and conservation specialists. The preliminary feasibility study will prove useful in future as we plan a full-fledged ICT based animal conservation study to assess how the application of ICT tools for wildlife monitoring can contribute to the economic empowerment of locals in Manang who depend on subsistence farming. In summary, this paper provides a preliminary overview of the potentiality of technology transfer from Japan to the remote hilly areas in Nepal for wildlife conservation by employing ICT tools and participatory sensing approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bajracharya, S.B., Furley, P.A., Newton, A.C.: Effectiveness of community involvement in delivering conservation benefits to the Annapurna conservation area, Nepal. Environ. Conserv. 32(3), 239–247 (2005)

    Article  Google Scholar 

  2. BBC: Nepal forest fires ‘cause big wildlife loss’. https://www.bbc.com/news/science-environment-17937620

  3. Beery, S.: Scaling biodiversity monitoring for the data age. XRDS 27(4), 14–18 (2021). https://doi.org/10.1145/3466857

  4. Bhatta, K., Bhattarai, S., Aryal, A.: Community based anti-poaching operation: effective model for wildlife conservation in Nepal. Poult. Fish. Wildl. Sci 6(2) (2018)

    Google Scholar 

  5. Cai, J., Ee, D., Pham, B., Roe, P., Zhang, J.: Sensor network for the monitoring of ecosystem: Bird species recognition. In: 2007 3rd International Conference on Intelligent Sensors, Sensor Networks and Information, pp. 293–298. IEEE (2007)

    Google Scholar 

  6. Chaplin, J., Brabyn, L.: Using remote sensing and GIS to investigate the impacts of tourism on forest cover in the Annapurna Conservation Area, Nepal. Appl. Geogr. 43, 159–168 (2013)

    Article  Google Scholar 

  7. Elias, A.R., Golubovic, N., Krintz, C., Wolski, R.: Where’s the bear?-Automating wildlife image processing using IoT and edge cloud systems. In: 2017 IEEE/ACM Second International Conference on Internet-of-Things Design and Implementation (IoTDI), pp. 247–258. IEEE (2017)

    Google Scholar 

  8. Farina, A., Lattanzi, E., Malavasi, R., Pieretti, N., Piccioli, L.: Avian soundscapes and cognitive landscapes: theory, application and ecological perspectives. Landsc. Ecol. 26(9), 1257–1267 (2011). https://doi.org/10.1007/s10980-011-9617-z

    Article  Google Scholar 

  9. Giraldo-Zuluaga, J.H., Salazar, A., Gomez, A., Diaz-Pulido, A.: Recognition of mammal genera on camera-trap images using multi-layer robust principal component analysis and mixture neural networks. In: 2017 IEEE 29th International Conference on Tools with Artificial Intelligence (ICTAI), pp. 53–60 (2017). https://doi.org/10.1109/ICTAI.2017.00020

  10. Ikeda, N.: Economic impacts of livestock depredation by snow leopard Uncia Uncia in the Kanchenjunga conservation area, Nepal Himalaya. Environ. Conserv. 3(4), 322–330 (2004)

    Google Scholar 

  11. Kobayashi, H.H., et al.: A real-time streaming and detection system for bio-acoustic ecological studies after the fukushima accident. In: Joly, A., Vrochidis, S., Karatzas, K., Karppinen, A., Bonnet, P. (eds.) Multimedia Tools and Applications for Environmental & Biodiversity Informatics. MSA, pp. 53–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-76445-0_4

    Chapter  Google Scholar 

  12. Kunwar, R.M., Khaling, S.: International forest fire news. Int. Forest Fire News 34, 1–9 (2016)

    Google Scholar 

  13. Møller, A.P., Mousseau, T.A.: Strong effects of ionizing radiation from Chernobyl on mutation rates. Sci. Rep. 5(1), 1–6 (2015)

    Google Scholar 

  14. Mousseau, T.A., Møller, A.P.: Genetic and ecological studies of animals in Chernobyl and Fukushima. J. Heredity 105(5), 704–709 (2014)

    Article  Google Scholar 

  15. Nakamura, K.W., Watanabe, R., Fujiwara, A., Saito, K., Kobayashi, H.H., Sezaki, K.: Plant phenology observation by students using time-lapse images: creation of the environment and examination of its adequacy. Environments 5(1), 7 (2018)

    Article  Google Scholar 

  16. O’Connell, A.F., Nichols, J.D., Karanth, K.U.: Camera Traps in Animal Ecology: Methods and Analyses, vol. 271. Springer, Tokyo (2011). https://doi.org/10.1007/978-4-431-99495-4

  17. Oli, M.K., Taylor, I.R., Rogers, M.E.: Snow leopard Panthera uncia predation of livestock: an assessment of local perceptions in the Annapurna Conservation Area, Nepal. Biol. Conserv. 68(1), 63–68 (1994)

    Google Scholar 

  18. Saito, K., et al.: Utilizing the Cyberforest live sound system with social media to remotely conduct woodland bird censuses in Central Japan. Ambio. 44(Suppl. 4), 572–583 (2015). https://doi.org/10.1007/s13280-015-0708-y

  19. Schaller, G.: Field of dreams. Wild. Conserv. September/October (1992)

    Google Scholar 

  20. Sharma, B.D., Clevers, J., De Graaf, R., Chapagain, N.R.: Mapping Equus kiang (tibetan Wild Ass) habitat in Surkhang, Upper Mustang, Nepal. Mount. Res. Dev. 24(2), 149–156 (2004)

    Google Scholar 

  21. Su, H., Bista, M., Li, M.: Mapping habitat suitability for Asiatic black bear and red panda in Makalu Barun National Park of Nepal from Maxent and GARP models. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  22. Sueur, J., Farina, A., Gasc, A., Pieretti, N., Pavoine, S.: Acoustic indices for biodiversity assessment and landscape investigation. Acta Acust. United Acust. 100(4), 772–781 (2014). https://doi.org/10.3813/AAA.918757

    Article  Google Scholar 

  23. Sullivan, B.L., Wood, C.L., Iliff, M.J., Bonney, R.E., Fink, D., Kelling, S.: eBird: a citizen-based bird observation network in the biological sciences. Biol. Conserv. 142(10), 2282–2292 (2009). https://doi.org/10.1016/j.biocon.2009.05.006

  24. Thapa, A., et al.: Combined land cover changes and habitat occupancy to understand corridor status of Laljhadi-Mohana wildlife corridor, Nepal. Eur. J. Wildl. Res. 63(5), 1–14 (2017)

    Article  Google Scholar 

  25. Ueta, M.: Adequate survey periods and the utility of sound recording to census nocturnal birds in the forest. Bird Res. 4 (2008)

    Google Scholar 

  26. Wildlife Management Office Inc. https://wmo.co.jp/service/monitoring. Accessed Feb 2022

  27. World Wild Life Fund: New WWF report: 3 billion animals impacted by Australia’s bushfire crisis. https://www.wwf.org.au/news/news/2020/3-billion-animals-impacted-by-australia-bushfire-crisis

Download references

Acknowledgements

This study is supported by the Coordination Funds for Promoting AeroSpace Utilization (2021–2023) grants from the Ministry of Education, Culture, Sports, Science, and Technology (MEXT) and a grant from the Tateisi Science and Technology Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hill Hiroki Kobayashi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shimotoku, D., Yuan, T., Parajuli, L.K., Kobayashi, H.H. (2022). Participatory Sensing Platform Concept for Wildlife Animals in the Himalaya Region, Nepal. In: Streitz, N.A., Konomi, S. (eds) Distributed, Ambient and Pervasive Interactions. Smart Living, Learning, Well-being and Health, Art and Creativity. HCII 2022. Lecture Notes in Computer Science, vol 13326. Springer, Cham. https://doi.org/10.1007/978-3-031-05431-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05431-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05430-3

  • Online ISBN: 978-3-031-05431-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics