Skip to main content

EEG Daydreaming, A Machine Learning Approach to Detect Daydreaming Activities

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13310))

Included in the following conference series:

Abstract

In this paper, we propose a new method to detect noise hindrances in Electroencephalographic (EEG) signals caused by mental distractions, which we named “daydreaming signals.” Our approach is based on sliding windows and aims to detect and locate these daydreaming signals to specific points in time. We expect to get cleaner data and, therefore, higher prediction accuracy in current available EEG datasets by removing these daydreaming signals. Beyond these improvements to existing data, this approach also has the potential to improve the quality of future data collection, as researchers can discover the pattern of daydreaming signals in trial rounds and deal with these signals accordingly.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bashivan, P., Rish, I., Heisig, S.: Mental state recognition via wearable EEG. arXiv preprint arXiv:1602.00985 (2016)

  2. Bashivan, P., Rish, I., Yeasin, M., Codella, N.: Learning representations from EEG with deep recurrent-convolutional neural networks (2016)

    Google Scholar 

  3. Biau, G., Scornet, E.: A random forest guided tour. TEST 25(2), 197–227 (2016). https://doi.org/10.1007/s11749-016-0481-7

    Article  MathSciNet  MATH  Google Scholar 

  4. Bigdely-Shamlo, N., Mullen, T., Kothe, C., Su, K.M., Robbins, K.A.: The prep pipeline: standardized preprocessing for large-scale EEG analysis. Front. Neuroinform. 9, 16, e5199 (2015)

    Google Scholar 

  5. Bird, J.J., Manso, L.J., Ribeiro, E.P., Ekárt, A., Faria, D.R.: A study on mental state classification using EEG-based brain-machine interface. In: 2018 International Conference on Intelligent Systems (IS), pp. 795–800. IEEE (2018)

    Google Scholar 

  6. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)

    Article  Google Scholar 

  7. Chen, Y., Zhang, D.: Well log generation via ensemble long short-term memory (ENLSTM) network. Geophys. Res. Lett. 47(23), e2020GL087685 (2020)

    Google Scholar 

  8. Cortes, C., Vapnik, V.: Support-vector networks. Mach. Learn. 20(3), 273–297 (1995)

    Google Scholar 

  9. Craik, A., He, Y., Contreras-Vidal, J.L.: Deep learning for electroencephalogram (EEG) classification tasks: a review. J. Neural Eng. 16(3), 031001 (2019)

    Google Scholar 

  10. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  11. Ienca, M., Haselager, P., Emanuel, E.J.: Brain leaks and consumer neurotechnology. Nat. Biotechnol. 36(9), 805–810 (2018)

    Article  Google Scholar 

  12. Jas, M., Engemann, D.A., Bekhti, Y., Raimondo, F., Gramfort, A.: Autoreject: automated artifact rejection for MEG and EEG data. Neuroimage 159, 417–429, 031001 (2017)

    Google Scholar 

  13. Lei, J., Liu, C., Jiang, D.: Fault diagnosis of wind turbine based on long short-term memory networks. Renewable Energy 133, 422–432 (2019)

    Article  Google Scholar 

  14. Leske, S., Dalal, S.S.: Reducing power line noise in EEG and meg data via spectrum interpolation. Neuroimage 189, 763–776, 031001 (2019)

    Google Scholar 

  15. Li, G., Lee, C.H., Jung, J.J., Youn, Y.C., Camacho, D.: Deep learning for EEG data analytics: a survey. Concurrency Comput. Practice Exp. 32(18), e5199 (2020)

    Google Scholar 

  16. Lotte, F., et al.: A review of classification algorithms for EEG-based brain-computer interfaces: a 10 year update. J. Neural Eng. 15(3), 031005 (2018)

    Google Scholar 

  17. Lotte, F., Congedo, M., Lécuyer, A., Lamarche, F., Arnaldi, B.: A review of classification algorithms for EEG-based brain-computer interfaces. J. Neural Eng. 4(2), R1, 031005 (2007)

    Google Scholar 

  18. Qu, X., Hall, M., Sun, Y., Sekuler, R., Hickey, T.J.: A personalized reading coach using wearable EEG sensors-a pilot study of brainwave learning analytics. In: CSEDU (2), pp. 501–507 (2018)

    Google Scholar 

  19. Qu, X., Liu, P., Li, Z., Hickey, T.: Multi-class time continuity voting for EEG classification. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 24–33. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_3

  20. Qu, X., Mei, Q., Liu, P., Hickey, T.: Using EEG to distinguish between writing and typing for the same cognitive task. In: Frasson, C., Bamidis, P., Vlamos, P. (eds.) BFAL 2020. LNCS (LNAI), vol. 12462, pp. 66–74. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60735-7_7

  21. Qu, X., Sun, Y., Sekuler, R., Hickey, T.: EEG markers of stem learning. In: 2018 IEEE Frontiers in Education Conference (FIE), pp. 1–9. IEEE (2018)

    Google Scholar 

  22. Quitadamo, L., Cavrini, F., Sbernini, L., Riillo, F., Bianchi, L., Seri, S., Saggio, G.: Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction: a review. J. Neural Eng. 14(1), 011001 (2017)

    Google Scholar 

  23. Roy, Y., Banville, H., Albuquerque, I., Gramfort, A., Falk, T.H., Faubert, J.: Deep learning-based electroencephalography analysis: a systematic review. J. Neural Eng. 16(5), 051001 (2019)

    Google Scholar 

  24. Wang, Y.B., You, Z.H., Yang, S., Yi, H.C., Chen, Z.H., Zheng, K.: A deep learning-based method for drug-target interaction prediction based on long short-term memory neural network. BMC Med. Inform. Decis. Mak. 20(2), 1–9 (2020)

    Google Scholar 

  25. Zhang, X., Yao, L., Wang, X., Monaghan, J., Mcalpine, D., Zhang, Y.: A survey on deep learning-based non-invasive brain signals: recent advances and new frontiers. J. Neural Eng. 18(3), 031002 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ruyang Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, R., Qu, X. (2022). EEG Daydreaming, A Machine Learning Approach to Detect Daydreaming Activities. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2022. Lecture Notes in Computer Science(), vol 13310. Springer, Cham. https://doi.org/10.1007/978-3-031-05457-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05457-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05456-3

  • Online ISBN: 978-3-031-05457-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics