Skip to main content

Universality and Interoperability Across Smart City Ecosystems

  • Conference paper
  • First Online:
Distributed, Ambient and Pervasive Interactions. Smart Environments, Ecosystems, and Cities (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13325))

Included in the following conference series:

Abstract

Contemporary smart cities involve a very high number of software applications and hardware devices that connect to the physical and social space of cities and form complex global ecosystems in different knowledge and activity domains (transportation, logistics, healthcare, local communities, industry, governance, social care and many more). In this context, smart cities can be considered multi-layered complex systems, systems of systems, that provide ubiquitous access to services, applications, platforms, and infrastructures. Although the inherent heterogeneity of Internet-of-Things (IoT) devices and their platforms, is one of the challenges smart city ecosystems face, several implementations promote digital transformation methodologies that attempt to bridge the different domains. Multiple IoT and software platforms, ranging from open source to proprietary solutions, implement different architectures and communication protocols for exchanging data streams. The diversity of these platforms though disrupts the creation of smart city ecosystems and prohibits the establishment of holistic and universal access models.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Komninos, N., Kakderi, C., Mora, L., Panori, A., Sefertzi, E.: Towards high impact smart cities: a universal architecture based on connected intelligence spaces. J. Knowl. Econ. 4, 1–29 (2021). https://doi.org/10.1007/s13132-021-00767-0

    Article  Google Scholar 

  2. Komninos, N.: Architectures of intelligence in smart cities: pathways to problem-solving and innovation. ArchiDoct. 6(1), 11 (2018)

    Google Scholar 

  3. IoT Analytics: State of IoT 2021. https://iot-analytics.com/number-connected-iot-devices. Accessed 29 Jan 2022

  4. IIoT World: The Smart City Ecosystem Framework – A Model for Planning Smart Cities. https://www.iiot-world.com/smart-cities-buildings-infrastructure/smart-cities/the-smart-city-ecosystem-framework-a-model-for-planning-smart-cities. Accessed 29 Jan 2022

  5. Danielsen, F., Flak, L.S., Ronzhyn, A.: Cloud computing in e-government: benefits and challenges. In: ICDS 2019: The Thirteenth International Conference on Digital Society and eGovernments, Athens, Greece (2019)

    Google Scholar 

  6. Gartner Inc.: Hype Cycle for Digital Government Technology, 2021, Alia Mendonsa, 21 July 2021, Whitepaper (2021)

    Google Scholar 

  7. Mineraud, J., Mazhelis, O., Su, X., Tarkoma, S.: A gap analysis of Internet-of-Things platforms. Comput. Commun. 89–90, 5–16 (2016). https://doi.org/10.1016/j.comcom.2016.03.015

    Article  Google Scholar 

  8. What is IoT Architecture: MongoDB. https://www.mongodb.com/cloud-explained/iot-architecture. Accessed 29 Jan 2022

  9. Tsampoulatidis, I., Nikolopoulos, S., Kompatsiaris, I., Komninos, N.: Geographic citizen science in citizen-government communication and collaboration: lessons learned from the Improve My City application. In: Geographic Citizen Science Design: No one Left Behind, pp. 186–205. UCL Press (2021)

    Google Scholar 

  10. Chalikias, A.P., et al.: Evidence-driven policy-making using heterogeneous data sources—the case of a controlled parking system in Thessaloniki. Data Policy 2(2020), e15 (2021)

    Google Scholar 

  11. Pereira, J., Batista, T., Cavalcante, E., Souza, A., Lopes, F., Cacho, N.: A platform for integrating heterogeneous data and developing smart city applications. Futur. Gener. Comput. Syst. 128(March), 552–566 (2022). https://doi.org/10.1016/j.future.2021.10.030

    Article  Google Scholar 

  12. Trilles, S., Calia, A., Belmonte, Ó., Torres-Sospedra, J., Montoliu, R., Huerta, J.: Deployment of an open sensorized platform in a smart city context. Futur. Gener. Comput. Syst. 76(November), 221–233 (2017). https://doi.org/10.1016/j.future.2016.11.005

    Article  Google Scholar 

  13. Massana, J., Pous, C., Burgas, L., Melendez, J., Colomer, J.: Identifying services for short-term load forecasting using data driven models in a smart city platform. Sustain. Cities Soc. 28(January), 108–117 (2017). https://doi.org/10.1016/j.scs.2016.09.001

    Article  Google Scholar 

  14. Pardo-García, N., Simoes, S.G., Dias, L., Sandgren, A., Suna, D., Krook-Riekkola, A.: Sustainable and resource efficient cities platform – SureCity holistic simulation and optimization for smart cities. J. Clean. Prod. 215(April), 701–711 (2019). https://doi.org/10.1016/j.jclepro.2019.01.070

    Article  Google Scholar 

  15. Badii, C., Bellini, P., Difino, A., Nesi, P., Pantaleo, G., Paolucci, M.: Microservices suite for smart city applications. Sensors (Switzerland) 19(21), 4798 (2019). https://doi.org/10.3390/s19214798

  16. Yu, J., Wen, Y., Jin, J., Zhang, Y.: Towards a service-dominant platform for public value co-creation in a smart city: evidence from two metropolitan cities in China. Technol. Forecast. Soc. Chang. 142(May), 168–182 (2019). https://doi.org/10.1016/j.techfore.2018.11.017

    Article  Google Scholar 

  17. Chamoso, P., González-Briones, A., de La Prieta, F., Venyagamoorthy, G.K., Corchado, J.M.: Smart city as a distributed platform: toward a system for citizen-oriented management. Comput. Commun. 152 (February), 323–32 (2020). https://doi.org/10.1016/j.comcom.2020.01.059

  18. Miguel, J.C., Casado, M.A.: GAFAnomy (Google, Amazon, Facebook and Apple): The Big Four and the b-Ecosystem (2016)

    Google Scholar 

  19. Kubler, S., et al.: IoT platforms initiative. In: Vermesan, O., Friess, P., (Eds.), “Internet of Things Connecting the Physical, Digital and Virtual Worlds: Digitising the Industry, pp. 265–292 (2016)

    Google Scholar 

  20. Chaturvedi, K., Kolbe, T.: Towards establishing cross-platform interoperability for sensors in smart cities. Sensors. 19(3), 562 (2019). https://doi.org/10.3390/s19030562

  21. Broring, A., et al.: Enabling IoT ecosystems through platform interoperability. IEEE Softw. 34(1), 54–61 (2017). https://doi.org/10.1109/MS.2017.2

  22. Javed, A., et al.: BIoTope: building an IoT open innovation ecosystem for smart cities. IEEE Access. 8, 224318–224342 (2020). https://doi.org/10.1109/access.2020.3041326

  23. Kazmi, A., Jan, Z., Zappa, A., Serrano, M.: Overcoming the heterogeneity in the internet of things for smart cities. In: Podnar Žarko, I., Broering, A., Soursos, S., Serrano, M. (eds.) Interoperability and Open-Source Solutions for the Internet of Things. LNCS, vol. 10218, pp. 20–35. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56877-5_2

    Chapter  Google Scholar 

  24. Bengt, A., et al.: Internet of things for smart cities: interoperability and open data. IEEE Internet Comput. 20(6), 52–56 (2016). https://doi.org/10.1109/mic.2016.124

  25. Robert, J., et al.: Open IoT ecosystem for enhanced interoperability in smart cities—example of Métropole de Lyon. Sensors. 17(12), 2849 (2017). https://doi.org/10.3390/s17122849

  26. Javed, A., Malhi, A., Kinnunen, T., Framling, K.: Scalable IoT platform for heterogeneous devices in smart environments. IEEE Access 8, 211973–211985 (2020). https://doi.org/10.1109/access.2020.3039368

    Article  Google Scholar 

  27. Liu, X., Heller, A., Nielsen, P.S.: CITIESData: a smart city data management framework. Knowl. Inf. Syst. 53(3), 699–722 (2017). https://doi.org/10.1007/s10115-017-1051-3

    Article  Google Scholar 

  28. Bischof, S., Karapantelakis, A., Nechifor, C.S., Sheth, A.P., Mileo, A., Barnaghi, P.: Semantic modelling of smart city data (2014)

    Google Scholar 

  29. Gupta, A., Panagiotopoulos, P., Bowen, F.: An orchestration approach to smart city data ecosystems. Technol. Forecast. Soc. Chang. 153, 119929 (2020)

    Article  Google Scholar 

  30. ΙΒΜ: Thessalonki, Greece. Smarter Cities Challenge report. IBM Corporate Citizenship & Corporate Affairs (2017)

    Google Scholar 

  31. Gaia-X: https://www.gaia-x.eu. Accessed 29 Jan 2022

  32. Gaia-X: Gaia-X architecture document. Gaia-X European Association for Data and Cloud AISBL (2021)

    Google Scholar 

  33. Autolitano, S., Pawlowska, A.: Europe’s quest for digital sovereignty: GAIA-X as a case study. IAI Papers. 21, 14 (2021)

    Google Scholar 

  34. Wilkinson, M.D., et al.: The FAIR guiding principles for scientific data management and stewardship. Sci. Data 3(1), 1–9 (2016)

    Article  Google Scholar 

  35. van Reisen, M., Stokmans, M., Basajja, M., Ong’ayo, A.O., Kirkpatrick, C., Mons, B.: Towards the tipping point for FAIR implementation. Data Intell. 2(1–2), 264–275 (2020)

    Article  Google Scholar 

  36. Komninos, N.: Smart Cities and Connected Intelligence: Platforms, Ecosystems and Network Effect Regions and Cities Series. Routledge, Milton Park (2021)

    Google Scholar 

  37. Tsampoulatidis, I., Bechtsis, D., Kompatsiaris, I.: Moving from e-Gov to we-Gov and beyond: a blockchain framework for the digital transformation of cities. In: Smart Cities in the Post-algorithmic Era: Integrating Technologies, Platforms and Governance, pp. 176–200. Edward Elgar (2019)

    Google Scholar 

  38. Komninos, N., Panori, A., Kakderi, C.: Smart cities beyond algorithmic logic: digital platforms, user engagement and data science. In: Smart Cities in the Post-algorithmic Era: Integrating Technologies, Platforms and Governance, pp. 1–15. Edward Elgar (2019)

    Google Scholar 

Download references

Acknowledgments

The research work of two of the authors (D. Bechtsis and E. Syrmos) was supported by the European Regional Development Fund (ERDF) 2014–2020, Central Macedonia Operational Programme, Project ‘iWet: Intelligent IoT System for Quantitative and Qualitative Measurements for water distribution networks’ MIS 5136429.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Tsampoulatidis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Tsampoulatidis, I., Komninos, N., Syrmos, E., Bechtsis, D. (2022). Universality and Interoperability Across Smart City Ecosystems. In: Streitz, N.A., Konomi, S. (eds) Distributed, Ambient and Pervasive Interactions. Smart Environments, Ecosystems, and Cities. HCII 2022. Lecture Notes in Computer Science, vol 13325. Springer, Cham. https://doi.org/10.1007/978-3-031-05463-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05463-1_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05462-4

  • Online ISBN: 978-3-031-05463-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics