Skip to main content

A Survey-Based Study to Identify User Annoyances of German Voice Assistant Users

  • Conference paper
  • First Online:
HCI in Business, Government and Organizations (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13327))

Included in the following conference series:

  • 2085 Accesses

Abstract

Voice user interfaces (VUIs) offer an intuitive, fast and convenient way for humans to interact with machines and computers. Yet, whether they’ll be truly successful and find widespread uptake in the near future depends on the user experience (UX) they offer. With this survey-based study (n = 108), we aim to identify the major annoyances German voice assistant users are facing in voice-driven human-computer interactions. The results of our questionnaire show that irritations appear in six categories: privacy issues, unwanted activation, comprehensibility, response quality, conversational design and voice characteristics. Our findings can help identify key areas of work to optimize voice user experience in order to achieve greater adaptation of the technology. In addition, they can provide valuable information for the further development and standardization of voice user experience (VUX) research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seaborn, K., Urakami, J.: Measuring voice UX quantitatively. In: Kitamura, Y., Quigley, A., Isbister, K., Igarashi, T. (eds.) Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems, Article 416, pp. 1–8. Association for Computing Machinery, New York (2021). https://doi.org/10.1145/3411763.3451712

  2. Juang, B.H., Rabiner, L.R.: Automatic speech recognition - a brief history of the technology development. In: Georgia Institute of Technology, Atlanta Rutgers University and the University of California, Santa Barbara (2004). https://web.ece.ucsb.edu/Faculty/Rabiner/ece259/Reprints/354_LALI-ASRHistory-final-10-8.pdf. Accessed 8 Feb 2022

  3. Kahle, T., Meißner, D: All about voice. Konzeption, Design und Vermarktung von Anwendungen für digitale Sprachassistenten. Haufe Group, Freiburg (2020)

    Google Scholar 

  4. Klein, A.M., Hinderks, A., Schrepp, M., Thomaschewski, J.: Measuring user experience quality of voice assistants. In: 15th Iberian Conference on Information Systems and Technologies (CISTI), Sevilla, Spain, pp. 1–4. IEEE (2020). https://doi.org/10.23919/CISTI49556.2020.9140966

  5. Thar, E.: Ich habe Sie leider nicht verstanden. Linguistische Optimierungsprinzipien fuer die muendliche Mensch-Maschine-Interaktion. Peter Lang, CH (2015)

    Google Scholar 

  6. Pearl, C.: Designing Voice User Interfaces. Principles of Conversational Experiences. O’Reilly, Beijing (2017)

    Google Scholar 

  7. Grice, H.P.: Logic and conversation. In: Cole, P., Morgan, J.L. (eds.) Syntax and Semantics, vol. 3, Speech Acts, pp. 41–58. Academic Press, New York (1975)

    Google Scholar 

  8. DIN EN ISO 9241-110:2020-10: Ergonomie der Mensch-System-Interaktion - Teil 110: Interaktionsprinzipien. Beuth Verlag, Berlin (2020)

    Google Scholar 

  9. Miclau, C., Demaeght, A., Müller, A.: Empirical research as a challenge in day-to-day teaching during the pandemic of 2020/21 - practical solutions. In: Nah, F.-H., Siau, K. (eds.) HCII 2021. LNCS, vol. 12783, pp. 608–618. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77750-0_40

    Chapter  Google Scholar 

  10. Jo, M.Y., Stautmeister, A.: Don’t make me think aloud! – Lautes Denken mit Eye-Tracking auf dem Prüfstand. In: Brau, H., Lehmann, A., Petrovic, K., Schroeder, M.C. (eds.) Tagungsband UP11, pp. 172–177. German UPA e.V., Stuttgart (2011)

    Google Scholar 

  11. Gast, O.: User experience im e-commerce. Messung von Emotionen bei der Nutzung interaktiver Anwendungen. Springer, Cham (2018). https://doi.org/10.1007/978-3-658-22484-4

  12. Ekman, P., Friesen, W.: Manual for the Facial Action Coding System. Consulting Psychologists Press, Palo Alto (1978)

    Google Scholar 

  13. Audeering Homepage. https://www.audeering.com/de/. Accessed 6 Feb 2022

  14. LimeSurvey Homepage: LimeSurvey: An Open Source Survey Tool; LimeSurvey GmbH, Hamburg, Germany. https://www.limesurvey.org/de/. Accessed 6 Feb 2022

  15. Dallmer-Zerbe, S., Haase, J.: Adapting smart home voice assistants to users’ privacy needs using a Raspberry-Pi based and self-adapting system. In: 2021 IEEE 30th International Symposium on Industrial Electronics (ISIE), pp. 1–6 (2021). https://doi.org/10.1109/ISIE45552.2021.9576469

  16. Anniappa, D., Kim, Y.: Security and privacy issues with virtual private voice assistants. In: 2021 IEEE 11th Annual Computing and Communication Workshop and Conference (CCWC), pp. 0702–0708 (2021). https://doi.org/10.1109/CCWC51732.2021.9375964

  17. Germanos, G., Kavallieros, D., Kolokotronis, N., Georgiou, N.: Privacy issues in voice assistant ecosystems. In: 2020 IEEE World Congress on Services (SERVICES), pp. 205–212 (2020). https://doi.org/10.1109/SERVICES48979.2020.00050

  18. Sweeney, M., Davis, E.: Alexa, are you listening? In: Information Technology and Libraries 39(4) (2020). https://doi.org/10.6017/ital.v39i4.12363

  19. Pal, D., Arpnikanondt, C., Razzaque, M.A., Funilkul, S.: To trust or not-trust: privacy issues with voice assistants. IT Prof. 22(5), 46–53. (2020). https://doi.org/10.1109/MITP.2019.2958914

  20. Snips Homepage. https://snips.ai/. Accessed 6 Feb 2022

  21. Mycroft Homepage. https://mycroft.ai/. Accessed 6 Feb 2022

  22. Rhasspy Homepage. https://rhasspy.readthedocs.io/en/latest/. Accessed 6 Feb 2022

  23. Pins, D., Alizadeh, F.: Without being asked: identifying use-cases for explanations in interaction with voice assistants (2021). https://doi.org/10.13140/RG.2.2.18764.33923

  24. Google Assistant Developers Homepage. https://developers.google.com/assistant/conversation-design/what-is-conversation-design. Accessed 6 Feb 2022

  25. Voicebot.ai, Voices.com, pulselabs: What consumers want in voice app design. https://voicebot.ai/wp-content/uploads/2019/11/what_consumers_want_in_voice_app_design_voicebot.pdf. Accessed 6 Feb 2022

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annebeth Demaeght .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demaeght, A., Nerb, J., Müller, A. (2022). A Survey-Based Study to Identify User Annoyances of German Voice Assistant Users. In: Fui-Hoon Nah, F., Siau, K. (eds) HCI in Business, Government and Organizations. HCII 2022. Lecture Notes in Computer Science, vol 13327. Springer, Cham. https://doi.org/10.1007/978-3-031-05544-7_20

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05544-7_20

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05543-0

  • Online ISBN: 978-3-031-05544-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics