Skip to main content

Auto Generating Maps in a 2D Environment

  • Conference paper
  • First Online:
HCI in Games (HCII 2022)

Abstract

Methods of algorithmic data generation, also known as Procedural Content Generation (PCG), consist of a striking vision within the gaming development industry. It is a way of creating enormously unique and diverse content, something that exponentially increases the game replayability. Although PCG in video games has a long history, there are also plenty of methods that have already been applied to levels, maps, models and textures among others. There is a variety of methods that have been used in video games, each with its own advantages and disadvantages. In the current study, an algorithm which generates 2D maps filled with rooms and some decorating items is presented. Map generation in commercial games heavily relies on constructive algorithms which do not evaluate and regenerate the output if something goes wrong. They do not demand heavy processing power and they can be used in real time situations, such as generating big worlds with fauna and flora. However, the playability of the generated map is examined by an agent which is usually created to access every corridor, room, and the start to finish pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, C., Louis, S.: Procedural maze level generation with evolutionary cellular automata. In: 2017 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1–8. IEEE (2017)

    Google Scholar 

  2. Alvarez, A., Dahlskog, S., Font, J., Togelius, J.: Empowering quality diversity in dungeon design with interactive constrained map-elites. In: 2019 IEEE Conference on Games (CoG), pp. 1–8. IEEE (2019)

    Google Scholar 

  3. Antoniuk, I., Rokita, P.: Procedural generation of multilevel dungeons for application in computer games using schematic maps and L-system. In: Bembenik, R., Skonieczny, Ł, Protaziuk, G., Kryszkiewicz, M., Rybinski, H. (eds.) Intelligent Methods and Big Data in Industrial Applications. SBD, vol. 40, pp. 261–275. Springer, Cham (2019). https://doi.org/10.1007/978-3-319-77604-0_19

    Chapter  Google Scholar 

  4. Bontrager, P., Togelius, J.: Learning to generate levels from nothing. In: 2021 IEEE Conference on Games (CoG), pp. 1–8. IEEE (2021)

    Google Scholar 

  5. De Kegel, B., Haahr, M.: Procedural puzzle generation: a survey. IEEE Trans. Games 12(1), 21–40 (2019)

    Article  Google Scholar 

  6. Delarosa, O., Dong, H., Ruan, M., Khalifa, A., Togelius, J.: Mixed-initiative level design with RL brush. In: Romero, J., Martins, T., Rodríguez-Fernández, N. (eds.) EvoMUSART 2021. LNCS, vol. 12693, pp. 412–426. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72914-1_27

    Chapter  Google Scholar 

  7. McMillen, E., Himsl, F.: The Binding of Isaac. https://bindingofisaac.fandom.com

  8. Electronic-Arts: Apex legends. https://www.ea.com/games/apex-legends

  9. Flores-Aquino, G.O., Ortega, J.D.D., Arvizu, R.Y.A., Muñoz, R.L., Gutierrez-Frias, O.O., Vasquez-Gomez, J.I.: 2D grid map generation for deep-learning-based navigation approaches. arXiv preprint arXiv:2110.13242 (2021)

  10. de Freitas, V.M.R.: Procedural generation of cave-like maps for 2D top-down games (2021)

    Google Scholar 

  11. Gellel, A., Sweetser, P.: A hybrid approach to procedural generation of roguelike video game levels. In: International Conference on the Foundations of Digital Games, pp. 1–10 (2020)

    Google Scholar 

  12. Gisslén, L., Eakins, A., Gordillo, C., Bergdahl, J., Tollmar, K.: Adversarial reinforcement learning for procedural content generation. In: 2021 IEEE Conference on Games (CoG), pp. 1–8. IEEE (2021)

    Google Scholar 

  13. Gravina, D., Khalifa, A., Liapis, A., Togelius, J., Yannakakis, G.N.: Procedural content generation through quality diversity. In: 2019 IEEE Conference on Games (CoG), pp. 1–8. IEEE (2019)

    Google Scholar 

  14. Green, M.C., Khalifa, A., Alsoughayer, A., Surana, D., Liapis, A., Togelius, J.: Two-step constructive approaches for dungeon generation. In: Proceedings of the 14th International Conference on the Foundations of Digital Games, pp. 1–7 (2019)

    Google Scholar 

  15. Gutierrez, J., Schrum, J.: Generative adversarial network rooms in generative graph grammar dungeons for the legend of Zelda. In: 2020 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2020)

    Google Scholar 

  16. Khalifa, A., Bontrager, P., Earle, S., Togelius, J.: PCGRL: procedural content generation via reinforcement learning. In: Proceedings of the AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment, vol. 16, pp. 95–101 (2020)

    Google Scholar 

  17. Lai, G., Latham, W., Leymarie, F.F.: Towards friendly mixed initiative procedural content generation: three pillars of industry. In: International Conference on the Foundations of Digital Games, pp. 1–4 (2020)

    Google Scholar 

  18. Lazaridis, L., Papatsimouli, M., Kollias, K.-F., Sarigiannidis, P., Fragulis, G.F.: Hitboxes: a survey about collision detection in video games. In: Fang, X. (ed.) HCII 2021. LNCS, vol. 12789, pp. 314–326. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-77277-2_24

    Chapter  Google Scholar 

  19. Liapis, A.: 10 years of the PCG workshop: past and future trends. In: International Conference on the Foundations of Digital Games, pp. 1–10 (2020)

    Google Scholar 

  20. Liu, J., Snodgrass, S., Khalifa, A., Risi, S., Yannakakis, G.N., Togelius, J.: Deep learning for procedural content generation. Neural Comput. Appl. 33(1), 19–37 (2020). https://doi.org/10.1007/s00521-020-05383-8

    Article  Google Scholar 

  21. Minini, P., Assuncao, J.: Combining constructive procedural dungeon generation methods with wavefunctioncollapse in top-down 2D games. In: Proceedings of SBGames (2020)

    Google Scholar 

  22. Persson, M.: Minecraft. https://www.minecraft.net/en-us

  23. Snodgrass, S., Ontanón, S.: Learning to generate video game maps using Markov models. IEEE Trans. Comput. Intell. AI Games 9(4), 410–422 (2016)

    Article  Google Scholar 

  24. Song, A., Whitehead, J.: TownSim: agent-based city evolution for naturalistic road network generation. In: Proceedings of the 14th International Conference on the Foundations of Digital Games, pp. 1–9 (2019)

    Google Scholar 

  25. Summerville, A.: Expanding expressive range: evaluation methodologies for procedural content generation. In: Fourteenth Artificial Intelligence and Interactive Digital Entertainment Conference (2018)

    Google Scholar 

  26. Summerville, A., et al.: Procedural content generation via machine learning (PCGML). IEEE Trans. Games 10(3), 257–270 (2018)

    Article  Google Scholar 

  27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press, Cambridge (2018)

    MATH  Google Scholar 

  28. Thompson, T., Lavender, B.: A generative grammar approach for action-adventure map generation in the legend of Zelda (2017)

    Google Scholar 

  29. Torrado, R.R., Khalifa, A., Green, M.C., Justesen, N., Risi, S., Togelius, J.: Bootstrapping conditional GANs for video game level generation. In: 2020 IEEE Conference on Games (CoG), pp. 41–48. IEEE (2020)

    Google Scholar 

  30. Viana, B.M., dos Santos, S.R.: Procedural dungeon generation: a survey. J. Interact. Syst. 12(1), 83–101 (2021)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to George F. Fragulis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lazaridis, L., Kollias, KF., Maraslidis, G., Michailidis, H., Papatsimouli, M., Fragulis, G.F. (2022). Auto Generating Maps in a 2D Environment. In: Fang, X. (eds) HCI in Games. HCII 2022. Lecture Notes in Computer Science, vol 13334. Springer, Cham. https://doi.org/10.1007/978-3-031-05637-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05637-6_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05636-9

  • Online ISBN: 978-3-031-05637-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics