Skip to main content

Videogame Design Using a User-Centered Approach to Teaching Projectile Motion

  • Conference paper
  • First Online:
HCI in Games (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13334))

Included in the following conference series:

  • 1448 Accesses

Abstract

The teaching of physics as a university course presents different challenges, within which the lack of interest and motivation to study physics in students is one of the most prominent. It has been identified that this demotivation is due to the disconnection that relates physical phenomena with the daily life. In addition, students need to construct proper mental representations to meaningfully learn scientific concepts and understand the physical world. Thus, some authors have proposed virtual simulators of several scientific phenomena as an alternative teaching tool. In the last decade, animations and video games in virtual reality have been proposed for the teaching of physics and other science subjects, such as chemistry and geometry, where authors have noticed the improvement in the assimilation of content. Virtual environments (VE) are proposed since they motivate students and bring them closer to reality, allowing them to visualize the phenomenon and modify it. Despite the increasing popularity of VE as a teaching tool, there is no clear evidence to establish a guide on their design for different learning contexts. Therefore, in this work, we propose a methodology to the design of a videogame for college teaching of the physical concept called projectile motion. Our proposal is based on user-centered design and videogame design to engage students with problem-solving activities in a game-like environment making learning more exciting and enjoyable for them. Finally, we present the first version of the video game improved by following 2 playtest with stakeholders.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Guichot Reina, V.: Historia de la educación: reflexiones sobre su objeto, ubicación epistemológica, devenir histórico y tendencias actuals. Rev. Latinoam. Estud. Educ. 2(1), 11–51 (2006)

    Google Scholar 

  2. Gaspard, P.: On the Relationship of Theory and History in Pedagogy, an Introduction to the West German Discussion on the Significance of the History of Education (1950–1980). (Studia pedagogical; new series 6). JSTOR (1985)

    Google Scholar 

  3. Abubakar, S.M., Danjuma, I.M.: Effects of explicit problem-solving strategy on students achievement and retention in senior secondary school physics. ATBU J. Sci. Technol. Educ. 1(1), 123–128 (2012)

    Google Scholar 

  4. Veloo, A., Nor, R., Khalid, R.: Attitude towards physics and additional mathematics achievement towards physics achievement. Int. Educ. Stud. 8(3), 35–43 (2015)

    Google Scholar 

  5. Docktor, J.L., Strand, N.E., Mestre, J.P., Ross, B.H.: Conceptual problem-solving in high school physics. Phys. Rev. Spec. Top.-Phys. Educ. Res. 11(2), 020106 (2015)

    Google Scholar 

  6. García Barneto, A., Gil Martín, M.R.: Entornos constructivistas de aprendizaje basados en simulaciones informáticas (2006)

    Google Scholar 

  7. Sánchez, A., Sierra, J.L., Martínez, S., Perales Palacios, F.J.: El aprendizaje de la Física en Bachillerato: investigación con simuladores informáticos versus aula tradicional. Enseñ. Las Cienc. Extra 1–4 (2005)

    Google Scholar 

  8. Ortega-Zarzosa, G., Medellín-Anaya, H.E., Martínez, J.R.: Influencia en el aprendizaje de los alumnos usando simuladores de física. Lat.-Am. J. Phys. Educ. 4(1), 20 (2010)

    Google Scholar 

  9. Bagozzi, L., Tarchi, C., Falsini, P., Fiorentini, C.: ‘Slow Science’: building scientific concepts in physics in high school. Int. J. Sci. Educ. 36(13), 2221–2242 (2014)

    Google Scholar 

  10. Wang, R., Lowe, R., Newton, S., Kocaturk, T.: Task complexity and learning styles in situated virtual learning environments for construction higher education. Autom. Constr. 113, 103148 (2020)

    Google Scholar 

  11. Kolb, D.A., Goldman, M.B.: Toward a typology of learning styles and learning environments: an investigation of the impact of learning styles and discipline demands on the academic performance, social adaptation and career choices of MIT seniors (1973)

    Google Scholar 

  12. Bellotti, F., et al.: Designing serious games for education: from pedagogical principles to game mechanisms. In: Proceedings of the 5th European Conference on Games Based Learning, pp. 26–34 (2011)

    Google Scholar 

  13. Liao, Y., Liu, S.: MechGames: Teaching and Learning Dynamics Through Computer Simulations and Games (2020)

    Google Scholar 

  14. Cheng, M.-T., Chen, J.-H., The Chu, S.-J., Chen, S.-Y.: The use of serious games in science education: a review of selected empirical research from 2002 to 2013. J. Comput. Educ. 2(3), 353–375 (2015)

    Google Scholar 

  15. Bahadoorsingh, S., Dyer, R., Sharma, C.: Integrating serious games into the engineering curriculum-a game-based learning approach to power systems analysis. Int. J. Comput. Vis. Robot. 6(3), 276–289 (2016)

    Google Scholar 

  16. Huang, W.: Evaluating the effectiveness of head-mounted display virtual reality (HMD VR) environment on students’ learning for a virtual collaborative engineering assembly task. In: 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR), pp. 827–829 (2018)

    Google Scholar 

  17. Kuhn, J., Lukowicz, P., Hirth, M., Poxrucker, A., Weppner, J., Younas, J.: gPhysics—using smart glasses for head-centered, context-aware learning in physics experiments. IEEE Trans. Learn. Technol. 9(4), 304–317 (2016)

    Google Scholar 

  18. Bogusevschi, D., Muntean, C., Muntean, G.-M.: Teaching and learning physics using 3D virtual learning environment: a case study of combined virtual reality and virtual laboratory in secondary school. J. Comput. Math. Sci. Teach. 39(1), 5–18 (2020)

    Google Scholar 

  19. Klein, P., Gröber, S., Kuhn, J., Müller, A.: Video analysis of projectile motion using tablet computers as experimental tools. Phys. Educ. 49(1), 37 (2014)

    Google Scholar 

  20. Jurcevic, J.S.: Learning projectile motion with the computer game “Scorched 3D”. Phys. Teach. 46(1), 48–49 (2008)

    Google Scholar 

  21. Mohanty, S.D., Cantu, S.: Teaching introductory undergraduate physics using commercial video games. Phys. Educ. 46(5), 570 (2011)

    Google Scholar 

  22. Halliday, D., Resnick, R., Walker, J.: Fundamentals of Physics. John Wiley & Sons (2013)

    Google Scholar 

  23. Wee, L.K., Chew, C., Goh, G.H., Tan, S., Lee, T.L.: Using tracker as a pedagogical tool for understanding projectile motion. Phys. Educ. 47(4), 448 (2012)

    Google Scholar 

  24. i Saltiveri, T.G.: MPIu+a. Una metodología que integra la Ingeniería del Software, la Interacción Persona-Ordenador y la Accesibilidad en el contexto de equipos de desarrollo multidisciplinares. Universitat de Lleida (2007)

    Google Scholar 

  25. Glynn, S.M., Brickman, P., Armstrong, N., Taasoobshirazi, G.: Science motivation questionnaire II: validation with science majors and nonscience majors. J. Res. Sci. Teach. 48(10), 1159–1176 (2011)

    Google Scholar 

  26. Kurniawan, S.: Interaction design: beyond human–computer interaction by Preece, Sharp, and Rogers (2001), ISBN 0471492787. Springer (2004)

    Google Scholar 

  27. Schell, J.: The Art of Game Design: A Book of Lenses. CRC Press (2008)

    Google Scholar 

  28. Arnab, S., et al.: Mapping learning and game mechanics for serious games analysis. Br. J. Educ. Technol. 46(2), 391–411 (2015)

    Google Scholar 

  29. Choi, J.O., Forlizzi, J., Christel, M., Moeller, R., Bates, M., Hammer, J.: Playtesting with a purpose. In: Proceedings of the 2016 Annual Symposium on Computer-Human Interaction in Play, pp. 254–265 (2016)

    Google Scholar 

  30. Denham, A.R.: Improving the design of a learning game through intrinsic integration and playtesting. Technol. Knowl. Learn. 21(2), 175–194 (2016)

    Google Scholar 

  31. García, J.G. ., Izquierdo, S.J.: GeoGebra, una propuesta para innovar el proceso enseñanza-aprendizaje en matemáticas. Revista electrónica sobre tecnología, educación y sociedad, 4(7), (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria F. Montoya .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Villada, J.F., Montoya, M.F. (2022). Videogame Design Using a User-Centered Approach to Teaching Projectile Motion. In: Fang, X. (eds) HCI in Games. HCII 2022. Lecture Notes in Computer Science, vol 13334. Springer, Cham. https://doi.org/10.1007/978-3-031-05637-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05637-6_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05636-9

  • Online ISBN: 978-3-031-05637-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics