Skip to main content

An Argument for Visualization Technologies in Spatial Skills Assessment

  • Conference paper
  • First Online:
Learning and Collaboration Technologies. Designing the Learner and Teacher Experience (HCII 2022)

Abstract

Spatial skills assessment is popular in educational research, with correlations found with success in STEM disciplines. One type of spatial assessment involves recognition and manipulation of drawings of 3D shapes. However, the use of 2D media to evaluate 3D abilities has inherent limitations that are a threat to the validity of the instruments. We propose that emerging visualization technologies can and should be used to create updated, more accurate instruments for the assessment of 3D spatial thinking. We examine the application of advanced computer rendering, virtual and augmented reality, eye-tracking, adaptive testing, and randomized question banks, and discuss how advanced visualization technologies can dramatically improve our ability to accurately evaluate spatial abilities in STEM educational contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sorby, S., Veurink, N., Streiner, S.: Does spatial skills instruction improve STEM outcomes? the answer is yes. Learn. Individ. Differ. 67, 209–222 (2018)

    Article  Google Scholar 

  2. Wai, J., Lubinski, D., Benbow, C.P.: Spatial ability for STEM domains: aligning over 50 years of cumulative psychological knowledge solidifies its importance. J. Educ. Psychol. 101(4), 817–835 (2009)

    Article  Google Scholar 

  3. Hegarty, M., Waller, D.A.: Individual differences in spatial abilities. In: the Cam-bridge Handbook of Visuospatial Thinking, pp. 121–169 (2005)

    Google Scholar 

  4. Lohman, D.F.: Spatial abilities as traits, processes, and knowledge. In: Advances in the Psychology of Human Intelligence, pp. 181–248. Erlbaum (1988)

    Google Scholar 

  5. Eliot, J., Smith, I.M.: An International Directory of Spatial Tasks. NFER-NELSON Publishing Company (1983)

    Google Scholar 

  6. Vandenberg, S.G., Kuse, A.R.: Mental rotations, a group test of three-dimensional spatial visualization. Percept. Mot. Skills 47(2), 599–604 (1978)

    Article  Google Scholar 

  7. Guay, R.B.: Purdue spatial visualisation test: rotations. West Lafayette: Purdue Research Foundation (1977)

    Google Scholar 

  8. CEEB. College Entrance Examination Board (CEEB) special aptitude test in spatial relations. College Entrance Examination Board (1939)

    Google Scholar 

  9. Gorska, R., Sorby, S.: Testing instruments for the assessment of 3D spatial skills. In: 2008 ASEE Annual Conference & Exposition Proceedings, 13.1196.1–13.1196.10, (2008)

    Google Scholar 

  10. Kelly, W., Branoff, T.J., Clark, A.: Spatial ability measurement in an introductory graphic communications course. In: Proceedings of 2014 ASEE Annual Conference & Exposition (2014)

    Google Scholar 

  11. Khine, M.S.: Visual-spatial Ability in STEM Education. Springer International Publishing (2017)

    Google Scholar 

  12. Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., Richardson, C.: A re-drawn Vandenberg and Kuse mental rotations test-different versions and factors that affect performance. Brain Cogn. 28(1), 39–58 (1995)

    Article  Google Scholar 

  13. Yoon, S.Y.: Revised Purdue Spatial Visualization Test: Visualization of Rotations (Revised PSVT:R) [Psychometric Instrument] (2011)

    Google Scholar 

  14. Pizlo, Z.: 3D Shape: Its Unique Place in Visual Perception. MIT Press (2008)

    Google Scholar 

  15. Messick, S.: Validity of psychological assessment. Am. Psychol. 50(9), 741–749 (1995)

    Article  Google Scholar 

  16. Bartlett, K.A., Camba, J.D.: The role of a graphical interpretation factor in the assessment of spatial visualization: a critical analysis. Spatial Cogn. Comput. 1–30 (2021)

    Google Scholar 

  17. Tsutsumi, E., Shiina, K., Suzaki, A., Yamanouchi, K., Saito, T., Suzuki, K.: A mental cutting test on female students using a stereographic system. J. Geo. Graph. 3(1), 111–119 (1999)

    MATH  Google Scholar 

  18. Tsutsumi, E., Ishikawa, W., Sakuta, H., Suzuki, K.: Analysis of causes of errors in the mental cutting test – effects of view rotation. J. Geo. Graph. 12(1), 109–120 (2008)

    Google Scholar 

  19. Field, B., Burvill, C., Weir, J.: The impact of spatial abilities on the comprehension of design drawings. In: Presented at the International Conference on Engineering Design ICED 05, Melbourne (2005)

    Google Scholar 

  20. Field, B.W.: A course in spatial visualisation. J. Geo. Graph. 3(2), 201–209 (1999)

    MATH  Google Scholar 

  21. Aitsiselmi, Y., Holliman, N.S.: Using mental rotation to evaluate the benefits of stereoscopic displays. In: Stereoscopic Displays and Applications XX, vol. 7237, p. 72370Q. IS&T/SPIE Electronic Imaging, San Jose, CA (2009)

    Google Scholar 

  22. Branoff, T.J.: Spatial visualization measurement: a modification of the purdue spatial visualization test—visualization of rotations. Eng. Des. Graph. J. 64(2), 14–22 (2000)

    Google Scholar 

  23. Takahashi, G., Connolly, P.: Impact of binocular vision on the perception of geometric shapes in spatial ability testing. In: Proceedings of 67th EDGD Midyear Meeting, pp. 26–31 (2012)

    Google Scholar 

  24. Yue, J.: Spatial visualization by realistic 3D views. Eng. Des. Graph. J. 72(1), 28–38 (2008)

    MathSciNet  Google Scholar 

  25. Fisher, M.L., Meredith, T., Gray, M.: Sex differences in mental rotation ability are a consequence of procedure and artificiality of stimuli. Evol. Psychol. Sci. 4(2), 124–133 (2018)

    Article  Google Scholar 

  26. Sanandaji, A., Grimm, C., West, R.: Inferring cross-sections of 3D objects: a 3D spatial ability test instrument for 3D volume segmentation. In: Proceedings of the ACM Symposium on Applied Perception, pp. 1–4 (2017)

    Google Scholar 

  27. Cohen, C.A., Hegarty, M.: Inferring cross sections of 3D objects: a new spatial thinking test. Learn. Individ. Differ. 22(6), 868–874 (2012)

    Article  Google Scholar 

  28. Hartman, N.W., Connolly, P.E., Gilger, J.W., Bertoline, G.R., Heisler, J.: Virtual reality-based spatial skills assessment and its role in computer graphics education. In: ACM SIGGRAPH 2006 Educators Program on - SIGGRAPH 2006, p. 46 (2006)

    Google Scholar 

  29. Kaufmann, H., Csisinko, M., Strasser, I., Strauss, S., Koller, I., Glück, J.: Design of a virtual reality supported test for spatial abilities. In: Proceedings of the International Conference on Geometry and Graphics, Dresden, Germany (2008)

    Google Scholar 

  30. Rizzo, A.A., Buckwalter, J.G., Neumann, U., Kesselman, C., Thiebaux, M., Larson, P., Rooyen, A.V.: The virtual reality mental rotation spatial skills project. Cyberpsychol. Behav. 1(2), 8 (1998)

    Article  Google Scholar 

  31. Rahimian, F.P., Ibrahim, R.: Impacts of VR 3D sketching on novice designers’ spatial cognition in collaborative conceptual architectural design. Des. Stud. 32(3), 255–291 (2011)

    Article  Google Scholar 

  32. Torner, J., Alpiste, F., Brigos, M.: Virtual reality application to improve spatial ability of engineering students, 9 (2016)

    Google Scholar 

  33. Tóth, R., Zichar, M., Hoffmann, M.: Gamified mental cutting test for enhancing spatial skills. In: 2020 11th IEEE International Conference on Cognitive Infocommunications (CogInfoCom), pp. 000229–000304 (2020)

    Google Scholar 

  34. Dominguez, M.G., Martin-Gutierrez, J., Gonzalez, C.R., Corredeaguas, C.M.M.: Methodologies and tools to improve spatial ability. Procedia. Soc. Behav. Sci. 51, 736–744 (2012)

    Article  Google Scholar 

  35. Martin-Gutierrez, J., Navarro, R.E., Gonzalez, M.A.: Mixed reality for development of spatial skills of first-year engineering students. In: 2011 Frontiers in Education Conference (FIE), T2D-1-T2D-6 (2011)

    Google Scholar 

  36. Camba, J.D., Otey, J., Contero, M., Alcañiz, M.: Visualization and Engineering Design Graphics with Augmented Reality. SDC Publications (2013)

    Google Scholar 

  37. Ha, O., Fang, N.: Interactive virtual and physical manipulatives for improving students’ spatial skills. J. Educ. Comput. Res. 55(8), 1088–1110 (2018)

    Article  Google Scholar 

  38. Cuendet, S., Bumbacher, E., Dillenbourg, P.: Tangible vs. virtual representations: When tangibles benefit the training of spatial skills. In: Proceedings of the 7th Nordic Conference on Human-Computer Interaction: Making Sense Through Design, pp. 99–108 (2012)

    Google Scholar 

  39. Cerrato, A., Siano, G., De Marco, A., Ricci, C.: The importance of spatial abilities in creativity and their assessment through tangible interfaces. In: Popescu, E., Belén Gil, A., Lancia, L., Simona Sica, L., Mavroudi, A. (eds.) MIS4TEL 2019. AISC, vol. 1008, pp. 89–95. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-23884-1_12

    Chapter  Google Scholar 

  40. Chang, J.S.-K.: The design and evaluation of embodied interfaces for supporting spatial ability. In: Proceedings of the Eleventh International Conference on Tangible, Embedded, and Embodied Interaction, pp. 681–684 (2017)

    Google Scholar 

  41. Chang, J.S.-K.,et al.: Evaluating the effect of tangible virtual reality on spatial perspective taking ability. In: Proceedings of the 5th Symposium on Spatial User Interaction, pp. 68–77 (2017)

    Google Scholar 

  42. Just, M.A., Carpenter, P.A.: Eye fixations and cognitive processes. Cogn. Psychol. 8(4), 441–480 (1976)

    Article  Google Scholar 

  43. Xue, J.: Uncovering the cognitive processes underlying mental rotation: An eye-movement study. Sci. Rep. 7(1), 1–12 (2017)

    Google Scholar 

  44. Khooshabeh, P., Hegarty, M.: Representations of shape during mental rotation. In: Proceedings of AAAI Spring Symposium Cognition Shape Process, pp. 15–20 (2010)

    Google Scholar 

  45. Li, X., Younes, R., Bairaktarova, D., Guo, Q.: Predicting spatial visualization problems’ difficulty level from eye-tracking data. Sensors 20(7), 1949 (2020)

    Article  Google Scholar 

  46. Toth, A.J., Campbell, M.J.: Investigating sex differences, cognitive effort, strategy, and performance on a computerised version of the mental rotations test via eye tracking. Sci. Rep. 9(1), 1–11 (2019)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jorge D. Camba .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bartlett, K.A., Camba, J.D. (2022). An Argument for Visualization Technologies in Spatial Skills Assessment. In: Zaphiris, P., Ioannou, A. (eds) Learning and Collaboration Technologies. Designing the Learner and Teacher Experience. HCII 2022. Lecture Notes in Computer Science, vol 13328. Springer, Cham. https://doi.org/10.1007/978-3-031-05657-4_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05657-4_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05656-7

  • Online ISBN: 978-3-031-05657-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics