Skip to main content

Learning Spatial Transformations and their Math Representations through Embodied Learning in Augmented Reality

  • Conference paper
  • First Online:
Learning and Collaboration Technologies. Novel Technological Environments (HCII 2022)

Abstract

In Computer Aided Design, Computer Graphics, Robotics, etc., students suffer from inefficient and non-proficient use of the 3D modeling software due to a lack of mathematical knowledge. Deficient knowledge and skills may lead students to use the modeling software through trial-and-error without understanding the algorithms and mathematics. Spatial/geometric transformation is recognized as one of the key factors in learning 3D modeling software. This paper presents a newly developed educational Augmented Reality (AR) mobile application to help students intuitively learn the geometric reasoning of transformation matrices and the corresponding trigonometric equations through play. The application, developed in primary and advanced levels, intends to facilitate the understanding of fundamentals of spatial transformations and their mathematical representations in a self-learning approach. The results of a pilot user study conducted on 7 undergraduate students for the primary level reveal that students’ math scores improved after playing with the application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sorby, S.A.: Educational research in developing 3-D spatial skills for engineering students. Int. J. Sci. Educ. 31(3), 459–480 (2009). https://doi.org/10.1080/09500690802595839

    Article  Google Scholar 

  2. Garmendia, M., Guisasola, J., Sierra, E.: First-year engineering students’ difficulties in visualization and drawing tasks. Eur. J. Eng. Educ. 32(3), 315–323 (2007). https://doi.org/10.1080/03043790701276874

    Article  Google Scholar 

  3. Hollebrands, K.F.: High school student’s understanding of geometric transformation in the context of a technological environment. J. Math. Behav. 22(1), 55–72 (2003). https://doi.org/10.1016/S0732-3123(03)00004-X

    Article  Google Scholar 

  4. Noss, R., Hoyles, C.: Windows on Mathematical Meanings. Springer, Dordrecht, no. 1984 (1996). https://doi.org/10.1007/978-94-009-1696-8

  5. Wheatley, G.H.: Spatial sense and mathematics learning. Natl. Counc. Teach. Math. 37(6), 10–11 (1990)

    Google Scholar 

  6. Stieff, M., Uttal, D.: How much can spatial training improve STEM achievement? Educ. Psychol. Rev. 27(4), 607–615 (2015). https://doi.org/10.1007/s10648-015-9304-8

    Article  Google Scholar 

  7. Blotnicky, K.A., Franz-Odendaal, T., French, F., Joy, P.: A study of the correlation between STEM career knowledge, mathematics self-efficacy, career interests, and career activities on the likelihood of pursuing a STEM career among middle school students. Int. J. STEM Educ. 5(1), 1–15 (2018). https://doi.org/10.1186/s40594-018-0118-3

    Article  Google Scholar 

  8. Gülkılıka, H., Uğurlub, H.H., Yürükc, N.: Examining students’ mathematical understanding of geometric transformations using the pirie-kieren model. Kuram ve Uygulamada Egit. Bilim. 15(6), 1531–1548 (2015). https://doi.org/10.12738/estp.2015.6.0056

    Article  Google Scholar 

  9. Yi, M.: International journal of mathematical education in mathematics education graduate students’ understanding of trigonometric ratios. Int. J. Math. Educ. Sci. Technol. 47(7), 1028–1047 (2016). https://doi.org/10.1080/0020739X.2016.1155774

    Article  Google Scholar 

  10. Weber, K.: Connecting research to teaching: teaching trigonometric functions: lessons learned from research. Math. Teach. 102(2), 144–150 (2008)

    Article  Google Scholar 

  11. Rohimah, S.M., Prabawanto, S.: Student’ s difficulty identification in completing the problem of equation and trigonometry identities. Int. J. Trends Math. Educ. Res. 2(1), 34–36 (2019)

    Article  Google Scholar 

  12. Kozhevnikov, M., et al.: Revising the visualizer-verbalizer dimension: evidence for two types of visualizers revising the visualizer – verbalizer dimension: evidence for two types of visualizers. Cogn. Instr. 20(1), 47–77 (2002). https://doi.org/10.1207/S1532690XCI2001

    Article  Google Scholar 

  13. Ashour, Z., Yan, W.: BIM-powered augmented reality for advancing human-building interaction. In: Proceedings of the 38th eCAADe Conference, TU Berlin, Berlin, Germany, vol. 1, pp. 169–178 (2020). http://papers.cumincad.org/data/works/att/ecaade2020_499.pdf

  14. Shaghaghian, Z., Yan, W., Song, D.: Towards learning geometric transformations through play: an AR-powered approach. In: Proceedings of 2021 5th International Conference Virtual Augmented Simulations (2021).https://doi.org/10.1145/3463914.3463915

  15. Keshavarzi, M., Parikh, A., Zhai, X., Caldas, L.: SceneGen: generative contextual scene augmentation using scene graph priors, arXiv Prepr. arXiv2009.12395, September 2020. https://doi.org/10.1145/nnnnnnn.nnnnnnn

  16. Maghool, S.A.H., Moeini, S.H.I., Arefazar, Y.: An educational application based on virtual reality technology for learning architectural details: challenges and benefits. ArchNet-IJAR Int. J. Archit. Res. 12(3), 246 (2018)

    Google Scholar 

  17. Anifowose, H., Yan, W., Dixit, M.: BIM LOD + Virtual Reality, ACADIA (2022)

    Google Scholar 

  18. Yan, W.: Augmented reality instructions for construction toys enabled by accurate model registration and realistic object/hand occlusions. Virtual Real. 1–14 (2021). https://doi.org/10.1007/s10055-021-00582-7

  19. van Garderen, D.: Spatial visualization, visual imager, and mathematical problem solving of students with varying abilities. J. Learn. Disabil. 39(6), 496–506 (2006)

    Article  Google Scholar 

  20. Rellensmann, J., Schukajlow, S., Leopold, C.: Make a drawing. Effects of strategic knowledge, drawing accuracy, and type of drawing on students’ mathematical modelling performance. Educ. Stud. Math. 95(1), 53–78 (2016). https://doi.org/10.1007/s10649-016-9736-1

    Article  Google Scholar 

  21. Pedrosa, C.M., Barbero, B.R., Miguel, A.R., Pedrosa, C.M., Barbero, B.R., Miguel, A.R.: Spatial visualization learning in engineering: traditional methods vs. a WebBased tool. J. Educ. Technol. Soc. 17(2), 142–157 (2014)

    Google Scholar 

  22. Kösa, T., Karakuş, F.: The effects of computer-aided design software on engineering students’ spatial visualisation skills. Eur. J. Eng. Educ. 3797 (2018). https://doi.org/10.1080/03043797.2017.1370578

  23. Sorby, S.A.: Spatial abilities and their relationship to computer aided design instruction. In: Proceedings of ASEE Annual Conference, pp. 4449–4454 (1999)

    Google Scholar 

  24. Hayes, J.C., Kraemer, D.J.M.: Grounded understanding of abstract concepts: the case of STEM learning. Cogn. Res. Principles Implications 2(1), 1–15 (2017). https://doi.org/10.1186/s41235-016-0046-z

    Article  Google Scholar 

  25. Martín-Dorta, N., Saorín, J.L., Contero, M.: Development of a fast remedial course to improve the spatial abilities of engineering students. J. Eng. Educ. 97(4), 505–513 (2008). https://doi.org/10.1002/j.2168-9830.2008.tb00996.x

    Article  Google Scholar 

  26. Kaufmann, H., Schmalstieg, D.: Mathematics and geometry education with collaborative augmented reality. Comput. Graph. 27(3), 339–345 (2003). https://doi.org/10.1016/S0097-8493(03)00028-1

    Article  Google Scholar 

  27. Taçgin, Z., Uluçay, N., Özüağ, E.: Designing and developing an augmented reality application: a sample of chemistry education. Turkiye Kim. Dern. Derg. Kisim C Kim. Egit.1(1), 147–164 (2016)

    Google Scholar 

  28. Fidan, M., Tuncel, M.: Integrating augmented reality into problem based learning: the effects on learning achievement and attitude in physics education. Comput. Educ. 142, 103635 (2019). https://doi.org/10.1016/j.compedu.2019.103635

    Article  Google Scholar 

  29. Ensafi, M., Thabet, W., Devito, S., Lewis, A.: Field testing of mixed reality (MR) technologies for quality control of as-built models at project handover: a case study. Epic Ser. Built Environ. 2, 246–254 (2021)

    Article  Google Scholar 

  30. Vassigh, S., et al.: Teaching building sciences in immersive environments: a prototype design, implementation, and assessment. Int. J. Constr. Educ. Res. 00(00), 1–17 (2018). https://doi.org/10.1080/15578771.2018.1525445

    Article  Google Scholar 

  31. Lindgren, R., Johnson-glenberg, M.: Emboldened by embodiment: six precepts for research on embodied learning and mixed reality. Educ. Res. 42(8), 445–452 (2013). https://doi.org/10.3102/0013189X13511661

    Article  Google Scholar 

  32. Squire, K., Klopfer, E.: Augmented reality simulations on handheld computers. Learn. Sci. 16(3), 371–413 (2007). https://doi.org/10.1080/10508400701413435

    Article  Google Scholar 

  33. Stieff, M., Lira, M.E., Scopelitis, S.A., Stieff, M., Lira, M.E., Scopelitis, S.A.: Gesture supports spatial thinking in STEM. Cogn. Instr. 34(2), 80–99 (2016). https://doi.org/10.1080/07370008.2016.1145122

    Article  Google Scholar 

  34. Dünser, A., Steinbügl, K., Kaufmann, H., Glück, J.: Virtual and augmented reality as spatial ability training tools. ACM Int. Conf. Proceeding Ser. 158, 125–132 (2006). https://doi.org/10.1145/1152760.1152776

    Article  Google Scholar 

  35. Hohenwarter, M.: GeoGebra (2018). https://www.geogebra.org/?lang=en

  36. Martin, J., Saorín, J., Contero, M., Alcaniz, M., Perez-lopez, D.C., Mario, O.: Design and validation of an augmented book for spatial abilities development in engineering students. Comput. Graph. 34, 77–91 (2010). https://doi.org/10.1016/j.cag.2009.11.003

    Article  Google Scholar 

  37. de Ravé, E.G., Jiménez-Hornero, F.J., Ariza-Villaverde, A.B., Taguas-Ruiz, J.: DiedricAR: a mobile augmented reality system designed for the ubiquitous descriptive geometry learning. Multimedia Tools Appl. 75(16), 9641–9663 (2016). https://doi.org/10.1007/s11042-016-3384-4

    Article  Google Scholar 

  38. Khan, M., Trujano, F., Maes, P.: Mathland: constructionist mathematical learning in the real world using immersive mixed reality. In: Beck, D., et al. (eds.) iLRN 2018. CCIS, vol. 840, pp. 133–147. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93596-6_9

    Chapter  Google Scholar 

  39. Widada, W., Herawaty, D., Nugroho, K.U.Z., Anggoro, A.F.D.: Augmented reality assisted by GeoGebra 3-D for geometry learning. J. Phys. Conf. Ser. 1731(1), 012034 (2021)

    Article  Google Scholar 

  40. Khalil, M., Farooq, R.A., Çakiroglu, E., Khalil, U., Khan, D.M.: The development of mathematical achievement in analytic geometry of grade-12 students through GeoGebra activities. Eurasia J. Math. Sci. Technol. Educ. 14(4), 1453–1463 (2018). https://doi.org/10.29333/ejmste/83681

    Article  Google Scholar 

  41. Kamariah, A.B., Ahmad Fauzi, M.A., Rohani, A.T.: Exploring the effectiveness of using GeoGebra and e-transformation in teaching and learning mathematics. Adv. Educ. Technol. 2, 19–23 (2010)

    Google Scholar 

  42. Fife, J.H., James, K., Bauer, M.: A learning progression for geometric transformations. ETS Res. Rep. Ser. 2019(1), 1–16 (2019). https://doi.org/10.1002/ets2.12236

    Article  Google Scholar 

  43. Shaghaghian, Z., Burte, H., Song, D., Yan, W.: Learning geometric transformations for parametric design: an augmented reality (AR)-powered approach. In: Gerber, D., Pantazis, E., Bogosian, B., Nahmad, A., Miltiadis, C. (eds.) Computer-Aided Architectural Design. Design Imperatives: The Future is Now. CAAD Futures 2021. Communications in Computer and Information Science, vol. 1465, pp. 515–527. Springer, Singapore (2022). https://doi.org/10.1007/978-981-19-1280-1_31

  44. Shaghaghian, Z., Burte, H., Song, D., Yan, W.: Design and evaluation of an augmented reality application for learning spatial transformations and their mathematical representations. In: IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (2022)

    Google Scholar 

  45. Bonder, G.M., Guay, R.B.: The Purdue visualization of rotations test. Chem. Educ. 2(4), 1–17 (1997). https://doi.org/10.1007/s00897970138a

    Article  Google Scholar 

  46. Khan Academy. https://www.khanacademy.org/math/geometry-home/transformations

  47. Hart, S.: Human Performance Research Group, NASA task load index user manual v. 1.0 (1980). https://humansystems.arc.nasa.gov/groups/TLX/

  48. Pintrich, P.R., De Groot, E.V.: Motivational and self-regulated learning components of classroom academic performance. J. Educ. Psychol. 82(1), 33–40 (1990)

    Article  Google Scholar 

  49. Alizadeh, B., Behzadan, A.H.: Flood depth mapping in street photos with image processing and deep neural networks. Comput. Environ. Urban Syst. 8, 101628 (2021)

    Article  Google Scholar 

  50. Razavi, M., Alikhani, H., Janfaza, V., Sadeghi, B., Alikhani, E.: An automatic system to monitor the physical distance and face mask wearing of construction workers in COVID-19 pandemic. SN Comput. Sci. 3(1), 1–8 (2021). https://doi.org/10.1007/s42979-021-00894-0

    Article  Google Scholar 

  51. Alizadeh, B., Li, D., Zhang, Z., Behzadan, A.H.: Feasibility study of urban flood mapping using traffic signs for route optimization. EG-ICE 2021 Work. Intell. Comput. Eng. (2021). https://arxiv.org/ftp/arxiv/papers/2109/2109.11712.pdf

  52. Johnson, L.: Trigonometry : An Overview of Important Topics. OPUS Open Portal t (2016)

    Google Scholar 

  53. Lodico, M.G., Spaulding, D.T., Voegtle, K.H.: Methods in Educational Research: from Theory to Practice. Jossey-Bass, San Francisco, vol. 28 (2010)

    Google Scholar 

Download references

Acknowledgements

. This material is based upon work supported by the National Science Foundation under Grant No. 2119549 and Texas A&M University’s grants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Yan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shaghaghian, Z., Burte, H., Song, D., Yan, W. (2022). Learning Spatial Transformations and their Math Representations through Embodied Learning in Augmented Reality. In: Zaphiris, P., Ioannou, A. (eds) Learning and Collaboration Technologies. Novel Technological Environments. HCII 2022. Lecture Notes in Computer Science, vol 13329. Springer, Cham. https://doi.org/10.1007/978-3-031-05675-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05675-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05674-1

  • Online ISBN: 978-3-031-05675-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics