Abstract
Open-source process mining provides many algorithms for the analysis of event data which could be used to analyze mainstream processes (e.g., O2C, P2P, CRM). However, compared to commercial tools, they lack the performance and struggle to analyze large amounts of data. This paper presents PM4Py-GPU, a Python process mining library based on the NVIDIA RAPIDS framework. Thanks to the dataframe columnar storage and the high level of parallelism, a significant speed-up is achieved on classic process mining computations and processing activities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cano, A.: A survey on graphic processing unit computing for large-scale data mining. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(1) (2018). https://doi.org/10.1002/widm.1232
Ferreira, D.R., Santos, R.M.: Parallelization of transition counting for process mining on multi-core CPUs and GPUs. In: Dumas, M., Fantinato, M. (eds.) BPM 2016. LNBIP, vol. 281, pp. 36–48. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58457-7_3
Hernández, S., van Zelst, S.J., Ezpeleta, J., van der Aalst, W.M.P.: Handling big(ger) logs: Connecting prom 6 to apache hadoop. In: Daniel, F., Zugal, S. (eds.) Proceedings of the BPM Demo Session 2015 Co-located with the 13th International Conference on Business Process Management (BPM 2015), Innsbruck, Austria, 2 September 2015. CEUR Workshop Proceedings, vol. 1418, pp. 80–84. CEUR-WS.org (2015). http://ceur-ws.org/Vol-1418/paper17.pdf
Kundra, D., Juneja, P., Sureka, A.: Vidushi: parallel implementation of alpha miner algorithm and performance analysis on CPU and GPU architecture. In: Reichert, M., Reijers, H.A. (eds.) BPM 2015. LNBIP, vol. 256, pp. 230–241. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-42887-1_19
Nogueira, A.F., Rela, M.Z.: Monitoring a CI/CD workflow using process mining. SN Comput. Sci. 2(6), 448 (2021). https://doi.org/10.1007/s42979-021-00830-2
Pasquadibisceglie, V., Appice, A., Castellano, G., Malerba, D.: Using convolutional neural networks for predictive process analytics. In: International Conference on Process Mining, ICPM 2019, Aachen, Germany, 24–26 June 2019, pp. 129–136. IEEE (2019). https://doi.org/10.1109/ICPM.2019.00028
Tax, N., Verenich, I., La Rosa, M., Dumas, M.: Predictive business process monitoring with LSTM neural networks. In: Dubois, E., Pohl, K. (eds.) CAiSE 2017. LNCS, vol. 10253, pp. 477–492. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59536-8_30
Acknowledgement
We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Berti, A., Nghia, M.P., van der Aalst, W.M.P. (2022). PM4Py-GPU: A High-Performance General-Purpose Library for Process Mining. In: Guizzardi, R., Ralyté, J., Franch, X. (eds) Research Challenges in Information Science. RCIS 2022. Lecture Notes in Business Information Processing, vol 446. Springer, Cham. https://doi.org/10.1007/978-3-031-05760-1_49
Download citation
DOI: https://doi.org/10.1007/978-3-031-05760-1_49
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05759-5
Online ISBN: 978-3-031-05760-1
eBook Packages: Computer ScienceComputer Science (R0)