Abstract
The B method is a formal method to design software components and to prove that they are compliant with some formalized requirements, giving a way to build safety-critical programs. However, the correctness of the obtained programs obviously rely on the correctness of those formalized software requirements. Using the CLEARSY Safety Platform, a vital processing solution developed by CLEARSY (SIL4 certified, Certifer 9594/0262) with native B capabilities, we demonstrate here a method to develop vital software with formal proofs directly attached to the key system properties. For instance, a train localization system is proven regarding the property stating that the computed location interval shall always contain the actual train. Such proofs become possible by combining software variables with variables representing physical entities and their timed evolution, thanks to the guaranteed time and deadlines of the CLEARSY Safety Platform. Thus, we avoid the problem of ensuring the correctness of a complex set of formalized software requirements by directly ensuring the wanted system properties. Assumptions and properties for the non-software parts are included in the same B model used to develop the software on the CLEARSY Safety Platform.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abrial, J.R.: The B-Book: Assigning Programs to Meanings, vol. 1. Cambridge University Press, Cambridge (1996)
Abrial, J.R.: Modeling in Event-B: System and Software Engineering. Cambridge University Press, Cambridge (2010)
Behm, P., Benoit, P., Faivre, A., Meynadier, J.-M.: Météor: a successful application of B in a large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM 1999. LNCS, vol. 1708, pp. 369–387. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48119-2_22
CLEARSY: CLEARSY Safety Platform – C_D720 User manual, v01.02, December 2020
Comptier, M., Déharbe, D., Fournier, P., Molinero-Perez, J.: Property-driven software analysis. In: ter Beek, M.H., McIver, A., Oliveira, J.N. (eds.) FM 2019. LNCS, vol. 11800, pp. 746–750. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30942-8_44
Comptier, M., Deharbe, D., Perez, J.M., Mussat, L., Pierre, T., Sabatier, D.: Safety analysis of a CBTC system: a rigorous approach with Event-B. In: Fantechi, A., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2017. LNCS, vol. 10598, pp. 148–159. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68499-4_10
Comptier, M., Leuschel, M., Mejia, L.-F., Perez, J.M., Mutz, M.: Property-based modelling and validation of a CBTC zone controller in Event-B. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 202–212. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_13
Lecomte, T., Comptier, M., Molinero, J., Sabatier, D.: Ensuring safety with system level formal modelling. In: Margaria, T., Steffen, B. (eds.) ISoLA 2020. LNCS, vol. 12478, pp. 393–403. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-61467-6_25
Lecomte, T., Lavaud, B., Sabatier, D., Burdy, L.: A safety flasher developed with the CLEARSY safety platform. In: ter Beek, M.H., Ničković, D. (eds.) FMICS 2020. LNCS, vol. 12327, pp. 210–227. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-58298-2_9
Parillaud, C., Fonteneau, Y., Belmonte, F.: Interlocking formal verification at alstom signalling. In: Collart-Dutilleul, S., Lecomte, T., Romanovsky, A. (eds.) RSSRail 2019. LNCS, vol. 11495, pp. 215–225. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-18744-6_14
Sabatier, D.: Using formal proof and B method at system level for industrial projects. In: Lecomte, T., Pinger, R., Romanovsky, A. (eds.) RSSRail 2016. LNCS, vol. 9707, pp. 20–31. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-33951-1_2
Sabatier, D., Burdy, L., Requet, A., Guéry, J.: Formal proofs for the NYCT line 7 (flushing) modernization project. In: Derrick, J., et al. (eds.) ABZ 2012. LNCS, vol. 7316, pp. 369–372. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-30885-7_34
Woodcock, J., Larsen, P.G., Bicarregui, J., Fitzgerald, J.: Formal methods: practice and experience. ACM Comput. Surv. 41(4), 1–36 (2009)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Burdy, L., Deharbe, D., Sabatier, D. (2022). Assigning Safe Executed Systems to Meanings. In: Collart-Dutilleul, S., Haxthausen, A.E., Lecomte, T. (eds) Reliability, Safety, and Security of Railway Systems. Modelling, Analysis, Verification, and Certification. RSSRail 2022. Lecture Notes in Computer Science, vol 13294. Springer, Cham. https://doi.org/10.1007/978-3-031-05814-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-05814-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05813-4
Online ISBN: 978-3-031-05814-1
eBook Packages: Computer ScienceComputer Science (R0)