Skip to main content

Heart Rate Variability for Stress Detection with Autistic Young Adults

  • Conference paper
  • First Online:
Adaptive Instructional Systems (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13332))

Included in the following conference series:

Abstract

Physiology, such as heart rate viability (HRV), can give meaningful insights about autonomic response to stress. Autism Spectrum Disorder has been linked to atypical physiological responses and poor emotion regulation. Explorations of the differences in physiological response between autistic young adults and neurotypical young adults can provide meaningful information on stress responses in these populations and can be used to create adaptive systems. Stress detection is an important aspect of creating closed-loop systems that can respond and change based on the emotional state of the user. This paper aims to explore HRV as a means of obtaining stress information from physiological data and to explore differences in stress response between autistic young adults and their neurotypical peers using Kubios HRV Premium analysis software during the PASAT-C, a distress tolerance task. Unpaired t tests showed statistically significant (pā€‰<ā€‰.05) differences in three stress related indexes: the parasympathetic nervous system index, the sympathetic nervous system index, and the stress index. Preliminary results show validity of HRV for stress insight and provides evidence for physiological differences in stress response between the two groups.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Recent surveys with autistic self-advocates suggest a preference for identify first language. In accordance have chosen to adopt identity first (autistic persons) language in place of person first (persons with autism) language [37].

  2. 2.

    Closed loop refers to a system in which an operation, process, or mechanism is regulated by feedback [38], in this case the feedback is stress.

  3. 3.

    www.kubios.com.

  4. 4.

    www.empatica.com.

  5. 5.

    www.millisecond.com.

References

  1. Hagemann, D., Waldstein, S.R., Thayer, J.F.: Central and autonomic nervous system integration in emotion. Brain Cogn. 52(1), 79ā€“87 (2003). https://doi.org/10.1016/S0278-2626(03)00011-3

    Article  Google Scholar 

  2. Malik, M., et al.: Heart rate variability. Circulation 93(5), 1043ā€“1065 (1996). https://doi.org/10.1161/01.CIR.93.5.1043

    Article  Google Scholar 

  3. Acharya, U.R., Joseph, K.P., Kannathal, N., et al.: Heart rate variability: a review. Med. Bio. Eng. Comput. 44, 1031ā€“1051 (2006). https://doi.org/10.1007/S11517-006-0119-0

    Article  Google Scholar 

  4. Salai, M., VassĆ”nyi, I., KĆ³sa, I.: Stress detection using low cost heart rate sensors. J. Healthc. Eng. 2016 (2016). https://doi.org/10.1155/2016/5136705

  5. Friedman, B.H.: Feelings and the body: the Jamesian perspective on autonomic specificity of emotion. Biol. Psychol. 84(3), 383ā€“393 (2010). https://doi.org/10.1016/j.biopsycho.2009.10.006

    Article  Google Scholar 

  6. Shu, L., et al.: A review of emotion recognition using physiological signals. Sensors (Switzerland) 18(7), 2074 (2018). https://doi.org/10.3390/s18072074

    Article  Google Scholar 

  7. Dalmeida, K.M., Masala, G.L.: HRV features as viable physiological markers for stress detection using wearable devices. Sensors 21(8), 2873 (2021). https://doi.org/10.3390/S21082873

    Article  Google Scholar 

  8. Smets, E., de Raedt, W., van Hoof, C.: Into the wild: the challenges of physiological stress detection in laboratory and ambulatory settings. IEEE J. Biomed. Health Inform. 23(2), 463ā€“473 (2019). https://doi.org/10.1109/JBHI.2018.2883751

    Article  Google Scholar 

  9. Migovich, M., Korman, A., Wade, J., Sarkar, N.: Design and validation of a stress detection model for use with a VR based interview simulator for autistic young adults. In: Antona, M., Stephanidis, C. (eds.) HCII 2021. LNCS, vol. 12768, pp. 580ā€“588. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78092-0_40

    Chapter  Google Scholar 

  10. Bian, D., Wade, J., Swanson, A., Warren, Z., Sarkar, N.: Physiology-based affect recognition during driving in virtual environment for autism intervention. In: PhyCS 2015 - 2nd International Conference on Physiological Computing Systems, Proceedings, pp. 137ā€“145 (2015). https://doi.org/10.5220/0005331301370145

  11. Panicker, S.S., Gayathri, P.: A survey of machine learning techniques in physiology based mental stress detection systems. Biocybernetics Biomed. Eng. 39(2), 444ā€“469 (2019). https://doi.org/10.1016/J.BBE.2019.01.004

    Article  Google Scholar 

  12. Zontone, P., Affanni, A., Bernardini, R., Piras, A., Rinaldo, R.: Stress detection through Electrodermal Activity (EDA) and Electrocardiogram (ECG) analysis in car drivers. In: European Signal Processing Conference, vol. 2019-September, September 2019. https://doi.org/10.23919/EUSIPCO.2019.8902631

  13. Visnovcova, Z., Calkovska, A., Tonhajzerova, I.: Heart rate variability and electrodermal activity as noninvasive indices of sympathovagal balance in response to stress (2013). https://doi.org/10.2478/acm-2013-0006

  14. Pourmohammadi, S., Maleki, A.: Stress detection using ECG and EMG signals: a comprehensive study. Comput. Methods Programs Biomed. 193, 105482 (2020). https://doi.org/10.1016/J.CMPB.2020.105482

    Article  Google Scholar 

  15. American Psychiatric Association. Diagnostic and Statistical Manual of Mental Disorders, May 2013. https://doi.org/10.1176/APPI.BOOKS.9780890425596

  16. Mazefsky, C.A.: Emotion regulation and emotional distress in autism spectrum disorder: foundations and considerations for future research. J. Autism Dev. Disord. 45(11), 3405ā€“3408 (2015). https://doi.org/10.1007/s10803-015-2602-7

    Article  Google Scholar 

  17. Data and Statistics on Autism Spectrum Disorder | CDC. https://www.cdc.gov/ncbddd/autism/data.html. Accessed 21 Feb 2022

  18. Dindar, K., et al.: Social-pragmatic inferencing, visual social attention and physiological reactivity to complex social scenes in autistic young adults. J. Autism Dev. Disord. 52(1), 73ā€“88 (2022). https://doi.org/10.1007/S10803-021-04915-Y/TABLES/6

    Article  Google Scholar 

  19. Benyon, D., Murray, D.: Adaptive systems: from intelligent tutoring to autonomous agents. Knowl.-Based Syst. 6(4), 197ā€“219 (1993). https://doi.org/10.1016/0950-7051(93)90012-I

    Article  Google Scholar 

  20. Tijs, T., Brokken, D., IJsselsteijn, W.: Creating an emotionally adaptive game. In: Stevens, S.M., Saldamarco, S.J. (eds.) ICEC 2008. LNCS, vol. 5309, pp. 122ā€“133. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89222-9_14

    Chapter  Google Scholar 

  21. Frommel, J., Schrader, C., Weber, M.: Towards emotion-based adaptive games: emotion recognition via input and performance features. In: Proceedings of the 2018 Annual Symposium on Computer-Human Interaction in Play (2018). https://doi.org/10.1145/3242671

  22. Bian, D., Wade, J., Swanson, A., Weitlauf, A., Warren, Z., Sarkar, N.: Design of a physiology-based adaptive virtual reality driving platform for individuals with ASD. ACM Trans. Accessible Comput. (TACCESS) 12(1), 1ā€“24 (2019). https://doi.org/10.1145/3301498

    Article  Google Scholar 

  23. Csikszentmihalyi, M.: Finding flow (1997)

    Google Scholar 

  24. Gronwall, D.M.A.: Paced auditory serial addition task: a measure of recovery from concussion. Percept. Mot. Skills 44(2), 367ā€“373 (1977). https://doi.org/10.2466/pms.1977.44.2.367

    Article  Google Scholar 

  25. Lejuez, C.W., Kahler, C.W, Brown, R.A.: A modified computer version of the Paced Auditory Serial Addition Task (PASAT) as a laboratory-based stressor (2003). undefined

    Google Scholar 

  26. Utilizing the PPG/BVP signal ā€“ Empatica Support. https://support.empatica.com/hc/en-us/articles/204954639-Utilizing-the-PPG-BVP-signal. Accessed 21 Feb 2022

  27. Tarvainen, M.P., Niskanen, J.P., Lipponen, J.A., Ranta-aho, P.O., Karjalainen, P.A.: Kubios HRV ā€“ Heart rate variability analysis software. Comput. Methods Programs Biomed. 113(1), 210ā€“220 (2014). https://doi.org/10.1016/J.CMPB.2013.07.024

    Article  Google Scholar 

  28. HRV preprocessing ā€“ Kubios. https://www.kubios.com/hrv-preprocessing/. Accessed 06 Feb 2022

  29. Tindle, J., Tadi, P.: Neuroanatomy, parasympathetic nervous system. StatPearls, November 2021. https://www.ncbi.nlm.nih.gov/books/NBK553141/. Accessed 06 Feb 2022

  30. HRV in evaluating ANS function ā€“ Kubios. https://www.kubios.com/hrv-ans-function/. Accessed 01 Nov 2021

  31. Baevsky, R.M., Berseneva, A.P.: Use Kardivar system for determination of the stress level and estimation of the body adaptability. Moscow-Prague (2008). https://www.semanticscholar.org/paper/Methodical-recommendations-USE-KARDiVAR-SYSTEM-FOR/74a292bfafca4fdf1149d557348800fcc1b0f33b

  32. Anderson, C., Butt, C., Sarsony, C.: Young adults on the autism spectrum and early employment-related experiences: aspirations and obstacles. J. Autism Dev. Disord. 51(1), 88ā€“105 (2021). https://doi.org/10.1007/S10803-020-04513-4/TABLES/2

    Article  Google Scholar 

  33. ā€œAutism | U.S. Department of Labor. https://www.dol.gov/agencies/odep/topics/autism. Accessed 28 Oct 2020

  34. Burke, S.L., Li, T., Grudzien, A., Garcia, S.: Brief report: improving employment interview self-efficacy among adults with autism and other developmental disabilities using virtual interactive training agents (ViTA). J. Autism Dev. Disord. 51(2), 741ā€“748 (2020). https://doi.org/10.1007/s10803-020-04571-8

    Article  Google Scholar 

  35. Mj, S., et al.: Virtual interview training for autistic transition age youth: a randomized controlled feasibility and effectiveness trial. Autism: Int. J. Res. Pract. 25(6), 1536ā€“1552 (2021). https://doi.org/10.1177/1362361321989928

    Article  Google Scholar 

  36. Adiani, D., et al.: Career Interview Readiness in Virtual Reality (CIRVR): a platform for simulated interview training for autistic individuals and their employers. ACM Trans. Accessible Comput. 15, 1ā€“28 (2022)

    Article  Google Scholar 

  37. Kenny, L., Hattersley, C., Molins, B., Buckley, C., Povey, C., Pellicano, E.: Which terms should be used to describe autism? perspectives from the UK autism community. Autism 20(4), 442ā€“462 (2016). https://doi.org/10.1177/1362361315588200

    Article  Google Scholar 

  38. Closed loop definition & Meaning - Merriam-Webster.ā€ https://www.merriam-webster.com/dictionary/closed%20loop. Accessed 15 Feb 2022

Download references

Acknowledgments

This project was funded by a Microsoft AI for Accessibility grant, by the National Science Foundation under awards 1936970 and 2033413 and by the National Science Foundation Research Traineeship DGE 19ā€“22697. The authors would like to thank the participants for their time.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miroslava Migovich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Migovich, M., Adiani, D., Swanson, A., Sarkar, N. (2022). Heart Rate Variability for Stress Detection with Autistic Young Adults. In: Sottilare, R.A., Schwarz, J. (eds) Adaptive Instructional Systems. HCII 2022. Lecture Notes in Computer Science, vol 13332. Springer, Cham. https://doi.org/10.1007/978-3-031-05887-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05887-5_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05886-8

  • Online ISBN: 978-3-031-05887-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics