Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13319))

Included in the following conference series:

  • 1943 Accesses

Abstract

Autonomous machines are more and more capable of executing complex tasks with the support of intelligent algorithms, and they are deploying rapidly at an unprecedented pace. In the meanwhile human-machine teaming is promising to accomplish more and more challenging tasks by integrating strengths and avoiding weaknesses from both sides. However, due to imperfections from both human and machine sides and their interactions, potential safety issues should be considered in advance so that researchers and engineers could prevent or tackle those issues with preparation and make the human-machine system safer and more successful. In this paper, we proposed a framework under the context of human-machine (algorithm) collaboration, and we addressed possible safety issues within and out of the human-machine system. We classified those safety issues into internal safety issues representing the safety issues within the human-machine system and external safety issues representing safety issues out of the human-machine system to organizational and societal levels. To tackle those safety issues, under this proposed framework, we listed possible countermeasures according to the literature so that we could provide pedals to control the autonomous agents and human-machine teaming and enable safer human- machine collaboration in the future.

This study is supported by the National Natural Science Foundation of China under grant numbers 72192824 & 71942005.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Amodei, D., Olah, C., Steinhardt, J., Christiano, P., Schulman, J., Mané, D.: Concrete problems in AI safety, pp. 1–29 (2016)

    Google Scholar 

  2. Baudin, É., Blanquart, J.P., Guiochet, J., Powell, D.: Independent safety systems for autonomy: state of the art and future directions. Ph.D. thesis, LAAS-CNRS (2007)

    Google Scholar 

  3. Begoli, E., Bhattacharya, T., Kusnezov, D.: The need for uncertainty quantification in machine-assisted medical decision making. Nat. Mach. Intell. 1(1), 20–23 (2019). http://dx.doi.org/10.1038/s42256-018-0004-1

  4. Biondi, F., Alvarez, I., Jeong, K.A.: Human-vehicle cooperation in automated driving: a multidisciplinary review and appraisal. Int. J. Hum.-Comput. Interact. 35(11), 932–946 (2019)

    Article  Google Scholar 

  5. Bonnefon, J.F., Shariff, A., Rahwan, I.: The social dilemma of autonomous vehicles. Science 352(6293), 1573–1576 (2016)

    Article  Google Scholar 

  6. Brown, D.S., Schneider, J., Dragan, A., Niekum, S.: Value alignment verification. In: International Conference on Machine Learning, pp. 1105–1115. PMLR (2021)

    Google Scholar 

  7. Brown, S., Davidovic, J., Hasan, A.: The algorithm audit: scoring the algorithms that score us. Big Data Soc. 8(1), 2053951720983865 (2021)

    Article  Google Scholar 

  8. Chen, M., Zhou, P., Fortino, G.: Emotion communication system. IEEE Access 5, 326–337 (2016)

    Article  Google Scholar 

  9. Claybrook, J., Kildare, S.: Autonomous vehicles: no driver... no regulation? Science 361(6397), 36–37 (2018)

    Google Scholar 

  10. Daugherty, P.R., Wilson, H.J.: Human+ Machine: Reimagining Work in the Age of AI. Harvard Business Press (2018)

    Google Scholar 

  11. de Melo, C.M., Marsella, S., Gratch, J.: Human cooperation when acting through autonomous machines. Proc. Natl. Acad. Sci. 116(9), 3482–3487 (2019)

    Article  Google Scholar 

  12. Eckersley, P.: Impossibility and uncertainty theorems in AI value alignment (or why your AGI should not have a utility function). arXiv preprint arXiv:1901.00064 (2018)

  13. Faulhaber, A.K., et al.: Human decisions in moral dilemmas are largely described by utilitarianism: virtual car driving study provides guidelines for autonomous driving vehicles. Sci. Eng. Ethics 25(2), 399–418 (2019)

    Article  Google Scholar 

  14. Fu, J., Ma, L.: Long-haul vehicle routing and scheduling with biomathematical fatigue constraints. Transp. Sci. 56, 404–435 (2021)

    Article  Google Scholar 

  15. Gabriel, I.: Artificial intelligence, values, and alignment. Mind. Mach. 30(3), 411–437 (2020)

    Article  Google Scholar 

  16. Gehr, T., Mirman, M., Drachsler-Cohen, D., Tsankov, P., Chaudhuri, S., Vechev, M.: AI2: Safety and robustness certification of neural networks with abstract interpretation. In: 2018 IEEE Symposium on Security and Privacy (SP), pp. 3–18. IEEE (2018)

    Google Scholar 

  17. Glikson, E., Woolley, A.W.: Human trust in artificial intelligence: review of empirical research. Acad. Manag. Ann. 14(2), 627–660 (2020)

    Article  Google Scholar 

  18. Green, B., Chen, Y.: The principles and limits of algorithm-in-the-loop decision making. Proc. ACM Hum.-Comput. Interact. 3(CSCW), 1–24 (2019)

    Google Scholar 

  19. Guznov, S., et al.: Robot transparency and team orientation effects on human-robot teaming. Int. J. Hum.-Comput. Interact. 36, 650–660 (2020)

    Article  Google Scholar 

  20. Haesevoets, T., De Cremer, D., Dierckx, K., Van Hiel, A.: Human-machine collaboration in managerial decision making. Comput. Hum. Behav. 119, 106730 (2021)

    Google Scholar 

  21. Hamon, R., Junklewitz, H., Sanchez, I.: Robustness and explainability of artificial intelligence. Publications Office of the European Union (2020)

    Google Scholar 

  22. Haselton, M.G., Nettle, D., Murray, D.R.: The evolution of cognitive bias. Handb. Evol. Psychol. 968–987 (2015)

    Google Scholar 

  23. Hentout, A., Aouache, M., Maoudj, A., Akli, I.: Human-robot interaction in industrial collaborative robotics: a literature review of the decade 2008–2017. Adv. Robot. 33(15–16), 764–799 (2019)

    Article  Google Scholar 

  24. Hoc, J.M.: From human-machine interaction to human-machine cooperation. Ergonomics 43(7), 833–843 (2000)

    Article  Google Scholar 

  25. Honig, S., Oron-Gilad, T.: Understanding and resolving failures in human-robot interaction: literature review and model development. Front. Psychol. 9(JUN), 861 (2018)

    Article  Google Scholar 

  26. Hu, B., Chen, J.: Optimal task allocation for human-machine collaborative manufacturing systems. IEEE Robot. Autom. Lett. 2(4), 1933–1940 (2017)

    Article  Google Scholar 

  27. Inagaki, T., Sheridan, T.B.: Authority and responsibility in human-machine systems: probability theoretic validation of machine-initiated trading of authority. Cogn. Technol. Work 14(1), 29–37 (2012)

    Article  Google Scholar 

  28. Ishowo-Oloko, F., Bonnefon, J.F., Soroye, Z., Crandall, J., Rahwan, I., Rahwan, T.: Behavioural evidence for a transparency-efficiency tradeoff in human-machine cooperation. Nat. Mach. Intell. 1(11), 517–521 (2019)

    Article  Google Scholar 

  29. Jaume-Palasi, L.: Why we are failing to understand the societal impact of artificial intelligence. Soc. Res.: Int. Q. 86(2), 477–498 (2019)

    Article  Google Scholar 

  30. Johnston, P., Harris, R.: The Boeing 737 MAX saga: lessons for software organizations. Softw. Qual. Prof. 21(3), 4–12 (2019)

    Google Scholar 

  31. Kim, R., et al.: A computational model of commonsense moral decision making. In: Proceedings of the 2018 AAAI/ACM Conference on AI, Ethics, and Society, pp. 197–203 (2018)

    Google Scholar 

  32. Klumpp, M.: Automation and artificial intelligence in business logistics systems: human reactions and collaboration requirements. Int. J. Log. Res. Appl. 21(3), 224–242 (2018)

    Article  Google Scholar 

  33. Lee, J.D., See, K.A.: Trust in automation: designing for appropriate reliance. Hum. Factors 46(1), 50–80 (2004)

    Article  MathSciNet  Google Scholar 

  34. Lin, R., Ma, L., Zhang, W.: An interview study exploring tesla drivers’ behavioural adaptation. Appl. Ergon. 72, 37–47 (2018)

    Article  Google Scholar 

  35. Lyons, J.B., Wynne, K.T., Mahoney, S., Roebke, M.A.: Trust and human-machine teaming: a qualitative study. In: Artificial Intelligence for the Internet of Everything, pp. 101–116. Elsevier (2019)

    Google Scholar 

  36. Ma, L., Chablat, D., Bennis, F., Zhang, W., Hu, B., Guillaume, F.: Fatigue evaluation in maintenance and assembly operations by digital human simulation in virtual environment. Virtual Reality 15(1), 55–68 (2011)

    Article  Google Scholar 

  37. Madhavan, P., Wiegmann, D.A.: Similarities and differences between human-human and human-automation trust: an integrative review. Theor. Issues Ergon. Sci. 8, 277–301 (2007)

    Article  Google Scholar 

  38. Matheson, E., Minto, R., Zampieri, E.G., Faccio, M., Rosati, G.: Human-robot collaboration in manufacturing applications: a review. Robotics 8(4), 1–25 (2019)

    Article  Google Scholar 

  39. Meissner, P., Keding, C.: The human factor in AI-based decision-making. MIT Sloan Manag. Rev. 63(1), 1–5 (2021)

    Google Scholar 

  40. National Academies of Sciences Engineering, and Medicine: Human-AI Teaming: State of the Art and Research Needs. National Academies Press (2021)

    Google Scholar 

  41. Norman, D.A., Ortony, A., Russell, D.M.: Affect and machine design: lessons for the development of autonomous machines. IBM Syst. J. 42(1), 38–44 (2003)

    Article  Google Scholar 

  42. O’Neill, T., et al.: Human-autonomy teaming: a review and analysis of the empirical literature. Hum. Factors (2020). https://doi.org/10.1177/0018720820960865

  43. Pereira, L.M., et al.: State-of-the-art of intention recognition and its use in decision making. AI Commun. 26(2), 237–246 (2013)

    Article  MathSciNet  Google Scholar 

  44. Rafferty, J., Nugent, C.D., Liu, J., Chen, L.: From activity recognition to intention recognition for assisted living within smart homes. IEEE Trans. Hum.-Mach. Syst. 47(3), 368–379 (2017)

    Article  Google Scholar 

  45. Rahwan, I.: Society-in-the-loop: programming the algorithmic social contract. Ethics Inf. Technol. 20(1), 5–14 (2017). https://doi.org/10.1007/s10676-017-9430-8

    Article  MathSciNet  Google Scholar 

  46. Rahwan, I., et al.: Machine behaviour. Nature 568, 477–486 (2019)

    Article  Google Scholar 

  47. Raisamo, R., Rakkolainen, I., Majaranta, P., Salminen, K., Rantala, J., Farooq, A.: Human augmentation: past, present and future. Int. J. Hum. Comput. Stud. 131, 131–143 (2019)

    Article  Google Scholar 

  48. Raji, I.D., et al.: Closing the AI accountability gap: defining an end-to-end framework for internal algorithmic auditing. In: Proceedings of the 2020 Conference on Fairness, Accountability, and Transparency, pp. 33–44 (2020)

    Google Scholar 

  49. Robla-Gomez, S., Becerra, V.M., Llata, J.R., Gonzalez-Sarabia, E., Torre-Ferrero, C., Perez-Oria, J.: Working together: a review on safe human-robot collaboration in industrial environments. IEEE Access 5, 26754–26773 (2017)

    Article  Google Scholar 

  50. Rodriguez-Soto, M., Serramia, M., Lopez-Sanchez, M., Rodriguez-Aguilar, J.A.: Instilling moral value alignment by means of multi-objective reinforcement learning. Ethics Inf. Technol. 24(1), 1–17 (2022)

    Article  Google Scholar 

  51. Saberi, M.: The human factor in AI safety. arXiv preprint arXiv:2201.04263 (2022)

  52. Sandvig, C., Hamilton, K., Karahalios, K., Langbort, C.: An algorithm audit. Data and discrimination: collected essays, pp. 6–10. New America Foundation, Washington, DC (2014)

    Google Scholar 

  53. Seeber, I., et al.: Machines as teammates: a research agenda on AI in team collaboration. Inf. Manage. 57(2), 103174 (2020)

    Article  MathSciNet  Google Scholar 

  54. Sohn, K., Kwon, O.: Technology acceptance theories and factors influencing artificial intelligence-based intelligent products. Telematics Inform. 47, 101324 (2020)

    Article  Google Scholar 

  55. Soll, J.B., Milkman, K.L., Payne, J.W.: A user’s guide to debiasing (2014)

    Google Scholar 

  56. Solso, R.L., MacLin, M.K., MacLin, O.H.: Cognitive Psychology. Pearson Education, New Zealand (2005)

    Google Scholar 

  57. Tahboub, K.A.: Intelligent human-machine interaction based on dynamic Bayesian networks probabilistic intention recognition. J. Intell. Rob. Syst. 45(1), 31–52 (2006)

    Article  Google Scholar 

  58. Tjoa, E., Guan, C.: A survey on explainable artificial intelligence (XAI): toward medical XAI. IEEE Trans. Neural Netw. Learn. Syst. 32(11), 4793–4813 (2020)

    Article  Google Scholar 

  59. Tsao, L., Li, L., Ma, L.: Human work and status evaluation based on wearable sensors in human factors and ergonomics: a review. IEEE Trans. Hum.-Mach. Syst. 49(1), 72–84 (2019)

    Article  Google Scholar 

  60. Turk, M.: Multimodal interaction: a review. Pattern Recogn. Lett. 36, 189–195 (2014)

    Article  Google Scholar 

  61. Warden, T., et al.: The national academies board on human system integration (BOHSI) panel: explainable AI, system transparency, and human machine teaming. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 63, pp. 631–635. SAGE Publications, Los Angeles (2019)

    Google Scholar 

  62. Wright, J.L., Chen, J.Y., Lakhmani, S.G.: Agent transparency and reliability in human-robot interaction: the influence on user confidence and perceived reliability. IEEE Trans. Hum.-Mach. Syst. 50(3), 254–263 (2020)

    Article  Google Scholar 

  63. Xiong, W., Fan, H., Ma, L., Wang, C.: Challenges of human-machine collaboration in risky decision-making. Front. Eng. Manage. 9(1), 1–15 (2022)

    Article  Google Scholar 

  64. Yang, C., Zhu, Y., Chen, Y.: A review of human - machine cooperation in the robotics domain. IEEE Trans. Hum.-Mach. Syst. 52(1), 12–25 (2022)

    Article  Google Scholar 

  65. Young, S.N., Peschel, J.M.: Review of human-machine interfaces for small unmanned systems with robotic manipulators. IEEE Trans. Hum.-Mach. Syst. 50(2), 131–143 (2020)

    Article  Google Scholar 

  66. Yu, K.H., Beam, A.L., Kohane, I.S.: Artificial intelligence in healthcare. Nat. Biomed. Eng. 2(10), 719–731 (2018)

    Article  Google Scholar 

  67. Zheng, J., Zhang, T., Ma, L., Wu, Y., Zhang, W.: Vibration warning design for reaction time reduction under the environment of intelligent connected vehicles. Appl. Ergon. 96, 103490 (2021)

    Article  Google Scholar 

  68. Zhou, X., Ma, L., Zhang, W.: Event-related driver stress detection with smartphones among young novice drivers. Ergonomics 1–19 (2022). https://doi.org/10.1080/00140139.2021.2020342

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liang Ma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ma, L., Wang, C. (2022). Safety Issues in Human-Machine Collaboration and Possible Countermeasures. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Anthropometry, Human Behavior, and Communication. HCII 2022. Lecture Notes in Computer Science, vol 13319. Springer, Cham. https://doi.org/10.1007/978-3-031-05890-5_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05890-5_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05889-9

  • Online ISBN: 978-3-031-05890-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics