Skip to main content

Towards More Clean Results in Data Visualization: A Weka Usability Experiment

  • Conference paper
  • First Online:
Design, User Experience, and Usability: UX Research, Design, and Assessment (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13321))

Included in the following conference series:

  • 2329 Accesses

Abstract

The development of Information Technologies has contributed to the increase and complexity of data, implying a greater diversity of mechanisms for knowledge extraction. This high data availability has made citizens increase their interest in analyzing data and making more informed decisions. Data mining is an intrinsically complex process that expert users generally use. The non-expert users are overwhelmed because they lack relevant techniques for analyzing and understanding these results. This proposal presents a usability experiment to evaluate the level of understanding of the results when applying classification techniques. The users worked with decision trees, one of the “friendliest” of existing patterns. We need to start focusing on new patterns for non-expert users from the results exposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Boyd, D., Crawford, K.: Six provocations for big data. in internet time: Symposium on the dynamics of …. (2011)

    Google Scholar 

  2. Kriegel, H.-P., Borgwardt, K.M., Kroger, P., Pryakhin, A., Schubert, M., Zimek, A.: Future trends in data mining. Data Min. Knowl. Discov. 15, 87–97 (2007)

    Article  MathSciNet  Google Scholar 

  3. Nielsen, J.: Usability inspection methods. In: Conference Companion on Human Factors in Computing Systems, pp. 413–414. ACM, New York (1994)

    Google Scholar 

  4. Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Riders Publishing, Thousand Oaks (1999)

    Google Scholar 

  5. Iso 9241-210: ISO 9241-210:2010 - Ergonomics of human-system interaction - Part 210: Human-centred design for interactive systems

    Google Scholar 

  6. Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., et al.: Knowledge discovery and data mining: towards a unifying framework. In: KDD, pp. 82–88 (1996)

    Google Scholar 

  7. Osipovs, P.: Classification tree applying for automated CV filtering in transport company. Procedia Comput. Sci. 149, 406–414 (2019)

    Article  Google Scholar 

  8. K. Goswami, P., Sharma, A.: Realtime analysis and visualization of data for instant decisions: a futuristic requirement of the digital world. Materials Today: Proceedings (2021). https://doi.org/10.1016/j.matpr.2021.02.193

  9. Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees (1984)

    Google Scholar 

  10. Zhao, Y.: On interactive data mining. Encyclopedia of Data Warehousing and Mining (2009)

    Google Scholar 

  11. Li, T., et al.: FIU-Miner (a fast, integrated, and user-friendly system for data mining) and its applications. Knowl. Inf. Syst. 52(2), 411–443 (2016). https://doi.org/10.1007/s10115-016-1014-0

    Article  Google Scholar 

  12. Dimitropoulos, H., et al.: AITION: a scalable platform for interactive data mining. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 646–651. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31235-9_51

    Chapter  Google Scholar 

  13. Camiolo, S., Porceddu, A.: gff2sequence, a new user friendly tool for the generation of genomic sequences. BioData Min (2013)

    Google Scholar 

  14. Bodt, S.D., Carvajal, D., Hollunder, J.: CORNET: a user-friendly tool for data mining and integration. Plant (2010)

    Google Scholar 

  15. Salcines, E.G., Romero, C., Ventura, S.: Sistema recomendador colaborativo usando minería de datos distribuida para la mejora continua de cursos e-learning. IEEE-RITA (2008)

    Google Scholar 

  16. Espinosa, R., García-Saiz, D., Zorrilla, M., Zubcoff, J.J., Mazón, J.-N.: S3Mining: a model-driven engineering approach for supporting novice data miners in selecting suitable classifiers. Comput. Stand. Interfaces. 65, 143–158 (2019)

    Google Scholar 

  17. Rojas, W.C., Quispe, F.M., Villegas, C.M.: Augmented visualization for data-mining models. Procedia Comput. Sci. 55, 650–659 (2015)

    Article  Google Scholar 

  18. Schuh, M.A., Banda, J.M., Wylie, T., McInerney, P., Pillai, K.G., Angryk, R.A.: On visualization techniques for solar data mining. Astronomy Comput. 10, 32–42 (2015)

    Article  Google Scholar 

  19. Steed, C.A.: Chapter 7 – interactive data visualization. In: Data Analytics for Intelligent Transportation Systems, pp. 165–190 (2017)

    Google Scholar 

  20. Laher, R.R.: Thoth: software for data visualization & statistics. Astronomy Comput. 17, 177–185 (2016)

    Article  Google Scholar 

  21. Ltifi, H., Benmohamed, E., Kolski, C., Ben Ayed, M.: Enhanced visual data mining process for dynamic decision-making. Knowl.-Based Syst. 112, 166–181 (2016)

    Google Scholar 

  22. Mazón, J.-N., Zubcoff, J.J., Garrigós, I., Espinosa, R., Rodríguez, R.: Open Business Intelligence: on the importance of data quality awareness in user-friendly data mining

    Google Scholar 

  23. Weka 3 - Data Mining with Open Source Machine Learning Software in Java. https://www.cs.waikato.ac.nz/ml/weka/. Accessed 14 Jan 2022

  24. Pavez, R., Diaz, J., Arango-Lopez, J., Ahumada, D., Mendez-Sandoval, C., Moreira, F.: Emo-mirror: a proposal to support emotion recognition in children with autism spectrum disorders. Neural Comput. Appl., 1–12 (2021)

    Google Scholar 

  25. Wang, T.: Why Big Data Needs Thick Data – Ethnography Matters – Medium. https://medium.com/ethnography-matters/why-big-data-needs-thick-data-b4b3e75e3d7

Download references

Acknowledgment

This work was partially funded by the Project UTA Mayor No 8729-20 of the Universidad de Tarapacá, Arica, Chile.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Espinosa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Díaz, J., Espinosa, R., Hochstetter, J. (2022). Towards More Clean Results in Data Visualization: A Weka Usability Experiment. In: Soares, M.M., Rosenzweig, E., Marcus, A. (eds) Design, User Experience, and Usability: UX Research, Design, and Assessment. HCII 2022. Lecture Notes in Computer Science, vol 13321. Springer, Cham. https://doi.org/10.1007/978-3-031-05897-4_27

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05897-4_27

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05896-7

  • Online ISBN: 978-3-031-05897-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics