Abstract
The development of Information Technologies has contributed to the increase and complexity of data, implying a greater diversity of mechanisms for knowledge extraction. This high data availability has made citizens increase their interest in analyzing data and making more informed decisions. Data mining is an intrinsically complex process that expert users generally use. The non-expert users are overwhelmed because they lack relevant techniques for analyzing and understanding these results. This proposal presents a usability experiment to evaluate the level of understanding of the results when applying classification techniques. The users worked with decision trees, one of the “friendliest” of existing patterns. We need to start focusing on new patterns for non-expert users from the results exposed.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Boyd, D., Crawford, K.: Six provocations for big data. in internet time: Symposium on the dynamics of …. (2011)
Kriegel, H.-P., Borgwardt, K.M., Kroger, P., Pryakhin, A., Schubert, M., Zimek, A.: Future trends in data mining. Data Min. Knowl. Discov. 15, 87–97 (2007)
Nielsen, J.: Usability inspection methods. In: Conference Companion on Human Factors in Computing Systems, pp. 413–414. ACM, New York (1994)
Nielsen, J.: Designing Web Usability: The Practice of Simplicity. New Riders Publishing, Thousand Oaks (1999)
Iso 9241-210: ISO 9241-210:2010 - Ergonomics of human-system interaction - Part 210: Human-centred design for interactive systems
Fayyad, U.M., Piatetsky-Shapiro, G., Smyth, P., et al.: Knowledge discovery and data mining: towards a unifying framework. In: KDD, pp. 82–88 (1996)
Osipovs, P.: Classification tree applying for automated CV filtering in transport company. Procedia Comput. Sci. 149, 406–414 (2019)
K. Goswami, P., Sharma, A.: Realtime analysis and visualization of data for instant decisions: a futuristic requirement of the digital world. Materials Today: Proceedings (2021). https://doi.org/10.1016/j.matpr.2021.02.193
Breiman, L., Friedman, J., Stone, C.J., Olshen, R.A.: Classification and regression trees (1984)
Zhao, Y.: On interactive data mining. Encyclopedia of Data Warehousing and Mining (2009)
Li, T., et al.: FIU-Miner (a fast, integrated, and user-friendly system for data mining) and its applications. Knowl. Inf. Syst. 52(2), 411–443 (2016). https://doi.org/10.1007/s10115-016-1014-0
Dimitropoulos, H., et al.: AITION: a scalable platform for interactive data mining. In: Ailamaki, A., Bowers, S. (eds.) SSDBM 2012. LNCS, vol. 7338, pp. 646–651. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31235-9_51
Camiolo, S., Porceddu, A.: gff2sequence, a new user friendly tool for the generation of genomic sequences. BioData Min (2013)
Bodt, S.D., Carvajal, D., Hollunder, J.: CORNET: a user-friendly tool for data mining and integration. Plant (2010)
Salcines, E.G., Romero, C., Ventura, S.: Sistema recomendador colaborativo usando minería de datos distribuida para la mejora continua de cursos e-learning. IEEE-RITA (2008)
Espinosa, R., García-Saiz, D., Zorrilla, M., Zubcoff, J.J., Mazón, J.-N.: S3Mining: a model-driven engineering approach for supporting novice data miners in selecting suitable classifiers. Comput. Stand. Interfaces. 65, 143–158 (2019)
Rojas, W.C., Quispe, F.M., Villegas, C.M.: Augmented visualization for data-mining models. Procedia Comput. Sci. 55, 650–659 (2015)
Schuh, M.A., Banda, J.M., Wylie, T., McInerney, P., Pillai, K.G., Angryk, R.A.: On visualization techniques for solar data mining. Astronomy Comput. 10, 32–42 (2015)
Steed, C.A.: Chapter 7 – interactive data visualization. In: Data Analytics for Intelligent Transportation Systems, pp. 165–190 (2017)
Laher, R.R.: Thoth: software for data visualization & statistics. Astronomy Comput. 17, 177–185 (2016)
Ltifi, H., Benmohamed, E., Kolski, C., Ben Ayed, M.: Enhanced visual data mining process for dynamic decision-making. Knowl.-Based Syst. 112, 166–181 (2016)
Mazón, J.-N., Zubcoff, J.J., Garrigós, I., Espinosa, R., Rodríguez, R.: Open Business Intelligence: on the importance of data quality awareness in user-friendly data mining
Weka 3 - Data Mining with Open Source Machine Learning Software in Java. https://www.cs.waikato.ac.nz/ml/weka/. Accessed 14 Jan 2022
Pavez, R., Diaz, J., Arango-Lopez, J., Ahumada, D., Mendez-Sandoval, C., Moreira, F.: Emo-mirror: a proposal to support emotion recognition in children with autism spectrum disorders. Neural Comput. Appl., 1–12 (2021)
Wang, T.: Why Big Data Needs Thick Data – Ethnography Matters – Medium. https://medium.com/ethnography-matters/why-big-data-needs-thick-data-b4b3e75e3d7
Acknowledgment
This work was partially funded by the Project UTA Mayor No 8729-20 of the Universidad de Tarapacá, Arica, Chile.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Díaz, J., Espinosa, R., Hochstetter, J. (2022). Towards More Clean Results in Data Visualization: A Weka Usability Experiment. In: Soares, M.M., Rosenzweig, E., Marcus, A. (eds) Design, User Experience, and Usability: UX Research, Design, and Assessment. HCII 2022. Lecture Notes in Computer Science, vol 13321. Springer, Cham. https://doi.org/10.1007/978-3-031-05897-4_27
Download citation
DOI: https://doi.org/10.1007/978-3-031-05897-4_27
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05896-7
Online ISBN: 978-3-031-05897-4
eBook Packages: Computer ScienceComputer Science (R0)