Abstract
In the context of Simulated Annealing (SA) algorithms, a Markov chain transition corresponds to a move in the solution space. The number of transitions or the Markov chain (MC) length at each temperature step is usually constant and empirically set. However, adaptive methods to compute the MC length can be used. This work focus on the effect of using different strategies to set the MC length in the SA behavior. To carry out this analysis, the Water Distribution Network Design (WDND) problem is selected, since it is a multimodal and NP-hard problem interesting to optimize. The results indicate that the use of adaptive strategies to set the MC length improves the solution quality versus the static one. Moreover, the proposed SA achieves the scalability property when the WDND solution space size is considered.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Garey, M.R., Johnson, D.S.: Computers and Intractability; A Guide to the Theory of NP-Completeness. W. H. Freeman & Co., USA (1990)
Kirkpatrick, S., Gelatt, C.D., Jr., Vecchi, M.: Optimization by simulated annealing. Science 220, 671–680 (1983)
Černý, V.: Thermodynamical approach to the traveling salesman problem: an efficient simulation algorithm. J. Optim. Theory Appl. 45, 41–51 (1985)
Borysenko, O., Byshkin, M.: Coolmomentum: a method for stochastic optimization by langevin dynamics with simulated annealing. Sci. Rep. 11, 10705 (2021)
Lin, S.-W., Cheng, C.-Y., Pourhejazy, P., Ying, K.-C., Lee, C.-H.: New benchmark algorithm for hybrid flowshop scheduling with identical machines. Expert Syst. Appl. 183, 115422 (2021)
Metropolis, N., Rosenbluth, A.W.R.M.N., Teller, A.H.: Nonequilibrium simulated annealing: a faster approach to combinatorial minimization. J. Chem. Phys. 21, 1087–1092 (1953)
Alba, E., Blum, C., Isasi, P., León, C., Gómez, J.A. (eds.), Frontmatter. Wiley, Hoboken (2009). https://doi.org/10.1002/9780470411353
Cardoso, M., Salcedo, R., de Azevedo, S.: Nonequilibrium simulated annealing: a faster approach to combinatorial minimization. Ind. Eng. Chem. Res. 33, 1908–1918 (1994)
Ali, M., Törn, A., Viitanen, S.: A direct search variant of the simulated annealing algorithm for optimization involving continuous variables. Comput. Oper. Res. 29(1), 87–102 (2002)
Cunha, M., Sousa, J.: Water distribution network design optimization: simulated annealing approach. J. Water Resour. Plan. Manage. 125, 215–221 (1999)
Alfonso, H., Bermudez, C., Minetti, G., Salto, C.: A real case of multi-period water distribution network design solved by a hybrid SA. In: XXVI Congreso Argentino de Ciencias de la Computación (CACIC), pp. 21–3 (2020). http://sedici.unlp.edu.ar/handle/10915/113258
De Corte, A., Sörensen, K.: Hydrogen. http://antor.uantwerpen.be/hydrogen. Accessed 27 Jun 2018
Bermudez, C., Alfonso, H., Minetti, G., Salto, C.: Hybrid simulated annealing to optimize the water distribution network design: a real case. In: Pesado, P., Eterovic, J. (eds.) CACIC 2020. CCIS, vol. 1409, pp. 19–34. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-75836-3_2
Bermudez, C., Alfonso, H., Minetti, G.F., Salto, C.: Performance analysis of simulated annealing using adaptive markov chain length. In: XXVII Congreso Argentino de Ciencias de la Computación (CACIC 2021), pp. 21–30 (2021)
Bermudez, C., Minetti, G., Salto, C.: SA to optimize the multi-period water distribution network design. In: XXIX Congreso Argentino de Ciencias de la Computación (CACIC 2018), pp. 12–21 (2018)
Bermudez, C., Salto, C., Minetti, G.: Designing a multi-period water distribution network with a hybrid simulated annealing. In: XLVIII JAIIO: XX Simposio Argentino de Inteligencia Artificial (ASAI 2019), pp. 39–52 (2019)
Rossman, L.: The EPANET Programmer’s Toolkit for Analysis of Water Distribution Systems (1999)
De Corte, A., Sörensen, K.: An iterated local search algorithm for water distribution network design optimization. Network 67(3), 187–198 (2016)
Acknowledgements
The authors acknowledge the support of Universidad Nacional de La Pampa (Project FI-CD-107/20) and the Incentive Program from MINCyT, Argentina. The last two authors are grateful for the support of the HUMAN-CENTERED SMART MOBILITY (HUMOVE) project, PID2020-116727RB-I00, Spain. The last author is also funded by CONICET, Argentina.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Bermudez, C., Alfonso, H., Minetti, G., Salto, C. (2022). Internal Behavior Analysis of SA Using Adaptive Strategies to Set the Markov Chain Length. In: Pesado, P., Gil, G. (eds) Computer Science – CACIC 2021. CACIC 2021. Communications in Computer and Information Science, vol 1584. Springer, Cham. https://doi.org/10.1007/978-3-031-05903-2_1
Download citation
DOI: https://doi.org/10.1007/978-3-031-05903-2_1
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05902-5
Online ISBN: 978-3-031-05903-2
eBook Packages: Computer ScienceComputer Science (R0)