Skip to main content

GPU Permutation Index: Good Trade-Off Between Efficiency and Results Quality

  • Conference paper
  • First Online:
Computer Science – CACIC 2021 (CACIC 2021)

Abstract

When managing multimedia data such as text, images, videos, etc., it only makes sense to search for similar objects, because it is difficult to imagine that it would be interesting to look for if there is an element in the database exactly the same as another given as an example. Hence, a solution can be modeled through metric spaces. In this scenario, for solving efficient searches, we preprocess the database to build an index; and then, utilizing this index, minimize the number of comparisons required to answer them. However, with very large metric databases this is not enough, it is also necessary to speed up queries using high-performance computing. Then, the GPGPU appears as a profitable alternative. Moreover, there are circumstances in which it is also reasonable to accept quick answers even if they are inexact or approximate.

In this work, we evaluate the trade-off between the answer quality and performance of our GPU implementation of Permutation Index. The implementation is a pure GPU, used to solve in parallel multiple approximate similarity searches on metric databases. Our proposal has two parallelism levels: intra-queries and inter-queries, many queries are solved in parallel (inter-parallelism), and each query is figured out in parallel (intra-parallelism). The experimental results confirm that the GPU Permutation Index is a remarkable recourse to solve approximate similarity searches on large metric databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquín, J.: Searching in metric spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

    Article  Google Scholar 

  2. Chávez, E., Figueroa, K., Navarro, G.: Proximity searching in high dimensional spaces with a proximity preserving order. In: Gelbukh, A., de Albornoz, Á., Terashima-Marín, H. (eds.) MICAI 2005. LNCS (LNAI), vol. 3789, pp. 405–414. Springer, Heidelberg (2005). https://doi.org/10.1007/11579427_41

    Chapter  Google Scholar 

  3. Ciaccia, P., Patella, M.: Approximate and probabilistic methods. SIGSPATIAL Spec. 2(2), 16–19 (2010). https://doi.org/10.1145/1862413.1862418

  4. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach, ser. Advances in Database Systems, vol. 32. Springer, Boston (2006). https://doi.org/10.1007/0-387-29151-2

  5. Pacheco, P., Malensek, M.: An Introduction to Parallel Programming, ser. An Introduction to Parallel Programming. Elsevier Science (2021). https://books.google.com.ar/books?id=uAfXnQAACAAJ

  6. Robey, R., Zamora, Y.: Parallel and High Performance Computing. Simon and Schuster (2021). https://books.google.com.ar/books?id=jNstEAAAQBAJ

  7. Kirk, D.B., Hwu, W.: Programming Massively Parallel Processors, A Hands on Approach. Elsevier, Morgan Kaufmann (2017). https://doi.org/10.1016/C2015-0-02431-5

  8. Barrientos, R., Millaguir, F., Sánchez, J.L., Arias, E.: GPU-based exhaustive algorithms processing KNN queries. J. Supercomput. 73, 4611–4634 (2017)

    Article  Google Scholar 

  9. Kruliš, M., Osipyan, H., Marchand-Maillet, S.: Employing GPU architectures for permutation-based indexing. Multimedia Tools Appl. 76(05) (2017). https://doi.org/10.1007/s11042-016-3677-7

  10. Li, S., Amenta, N.: Brute-Force k-nearest neighbors search on the GPU. In: Amato, G., Connor, R., Falchi, F., Gennaro, C. (eds.) SISAP 2015. LNCS, vol. 9371, pp. 259–270. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-25087-8_25

    Chapter  Google Scholar 

  11. Velentzas, P., Vassilakopoulos, M., Corral, A.: In-memory k nearest neighbor GPU-based query processing. In: Proceedings of the 6th International Conference on Geographical Information Systems Theory, Applications and Management - GISTAM, INSTICC, pp. 310–317. SciTePress (2020)

    Google Scholar 

  12. Barrientos, R.J., Gómez, J.I., Tenllado, C., Prieto, M., Zezula, P.: Multi-level clustering on metric spaces using a multi-GPU platform. In: Euro-Par (2013)

    Google Scholar 

  13. Eder dos Santos, R.U.P., Sofia, A.A.O.: Procesamiento de búsquedas por similitud. tecnologías de paralelización e indexación. In: Informe Científico Técnico UNPA, vol. 7, no. 2, pp. 111–138 (2015)

    Google Scholar 

  14. Gowanlock, M., Karsin, B.: Accelerating the similarity self-join using the GPU. J. Parallel Distrib. Comput. 133, 06 (2019)

    Article  Google Scholar 

  15. Barrientos, R.J., Riquelme, J.A., Hernández-García, R., Navarro, C.A., Soto-Silva, W.: Fast KNN query processing over a multi-node GPU environment. J. Supercomput., 3045–3071 (2022)

    Google Scholar 

  16. Riquelme, J.A., Barrientos, R.J., Hernández-García, R., Navarro, C.A.: An exhaustive algorithm based on GPU to process a KNN query. In: 2020 39th International Conference of the Chilean Computer Science Society (SCCC), pp. 1–8 (2020)

    Google Scholar 

  17. Lopresti, M., Piccoli, F., Reyes, N.: Goodness of the GPU permutation index: performance and quality results. In: XXVII Congreso Argentino de Ciencias de la Computación, CACIC 2021, pp. 321–332 (2021)

    Google Scholar 

  18. Figueroa, K., Chávez, E., Navarro, G., Paredes, R.: Speeding up spatial approximation search in metric spaces. ACM J. Exp. Algorithmics 14 (2009). Article 3.6

    Google Scholar 

  19. Bustos, B., Navarro, G.: Probabilistic proximity searching algorithms based on compact partitions. J. Discrete Algorithms 2(1), 115–134 (2004). The 9th International Symposium on String Processing and Information Retrieval. https://www.sciencedirect.com/science/article/pii/S1570866703000674

  20. Tokoro, K., Yamaguchi, K., Masuda, S.: Improvements of TLAESA nearest neighbour search algorithm and extension to approximation search. In: Proceedings of the 29th Australasian Computer Science Conference - Volume 48, ser. ACSC 2006, Darlinghurst, Australia, pp. 77–83. Australian Computer Society Inc., Australia (2006). http://dl.acm.org/citation.cfm?id=1151699.1151709

  21. Singh, A., Ferhatosmanoglu, H., Tosun, A.: High dimensional reverse nearest neighbor queries. In: The Twelfth International Conference on Information and Knowledge Management, ser. CIKM 2003, pp. 91–98. ACM, New York (2003). https://doi.org/10.1145/956863.956882

  22. Moreno-Seco, F., Micó, L., Oncina, J.: A modification of the LAESA algorithm for approximated k-NN classification. Pattern Recogn. Lett. 24(1–3), 47–53 (2003). http://www.sciencedirect.com/science/article/pii/S0167865502001873

  23. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, ser. SODA 2003, pp. 28–36. Society for Industrial and Applied Mathematics, Philadelphia (2003). http://dl.acm.org/citation.cfm?id=644108.644113

  24. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval. Pearson Education Ltd., Harlow (2011)

    Google Scholar 

  25. Cheng, J., Grossman, M.: Professional CUDA C Programming. CreateSpace Independent Publishing Platform (2017). https://books.google.com.ar/books?id=ApBtswEACAAJ

  26. Han, J., Sharma, B.: Learn CUDA Programming: A Beginner’s Guide to GPU Programming and Parallel Computing with CUDA 10.x and C/C++. Packt Publishing (2019). https://books.google.com.ar/books?id=dhWzDwAAQBAJ

  27. NVIDIA: Nvidia CUDA compute unified device architecture, programming guide, in NVIDIA (2020)

    Google Scholar 

  28. Lopresti, M., Miranda, N., Piccoli, F., Reyes, N.: Permutation index and GPU to solve efficiently many queries. In: VI Latin American Symposium on High Performance Computing, HPCLatAm 2013, pp. 101–112 (2013)

    Google Scholar 

  29. Figueroa, K., Reyes, N.: Permutation’s signatures for proximity searching in metric spaces. In: Amato, G., Gennaro, C., Oria, V., Radovanović, M. (eds.) SISAP 2019. LNCS, vol. 11807, pp. 151–159. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-32047-8_14

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabiana Piccoli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Lopresti, M., Piccoli, F., Reyes, N. (2022). GPU Permutation Index: Good Trade-Off Between Efficiency and Results Quality. In: Pesado, P., Gil, G. (eds) Computer Science – CACIC 2021. CACIC 2021. Communications in Computer and Information Science, vol 1584. Springer, Cham. https://doi.org/10.1007/978-3-031-05903-2_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05903-2_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05902-5

  • Online ISBN: 978-3-031-05903-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics