Abstract
In this paper, we propose MuTATE, a Multi-Task Augmented approach to learn Transferable Embeddings of knowledge graphs. Previous knowledge graph representation techniques either employ task-agnostic geometric hypotheses to learn informative node embeddings or integrate task-specific learning objectives like attribute prediction. In contrast, our framework unifies multiple co-dependent learning objectives with knowledge graph enrichment. We define co-dependence as multiple tasks that extract covariant distributions of entities and their relationships for prediction or regression objectives. We facilitate knowledge transfer in this setting: tasks\(\rightarrow \)graph, graph\(\rightarrow \)tasks, and task-1\(\rightarrow \)task-2 via task-specific residual functions to specialize the node embeddings for each task, motivated by domain-shift theory. We show 5% relative gains over state-of-the-art knowledge graph embedding baselines on two public multi-task datasets and show significant potential for cross-task learning.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Ai, Q., Azizi, V., Chen, X., Zhang, Y.: Learning heterogeneous knowledge base embeddings for explainable recommendation. Algorithms 11, 9 (2018)
Bordes, A., Usunier, N., Garcia-Duran, A., Weston, J., Yakhnenko, O.: Translating embeddings for modeling multi-relational data. In: Advances in Neural Information Processing Systems (NIPS) (2013)
Cao, Y., Wang, X., He, X., Hu, Z., Chua, T.-S.: Unifying knowledge graph learning and recommendation: towards a better understanding of user preferences. In: The World Wide Web Conference (WWW) (2019)
Casale, F.P., Dalca, A., Saglietti, L., Listgarten, J., Fusi, N.: Gaussian process prior variational autoencoders. In: Advances in Neural Information Processing Systems (2018)
Chami, I., Wolf, A., Juan, D.-C., Sala, F., Ravi, S., Ré, C.: Low-dimensional hyperbolic knowledge graph embeddings. arXiv preprint arXiv:2005.00545 (2020)
Cheng, D., Yang, F., Wang, X., Zhang, Y., Zhang, L.: Knowledge graph-based event embedding framework for financial quantitative investments. In: International Conference on Research and Development in Information Retrieval (SIGIR) (2020)
Daume III, H., Marcu, D.: Domain adaptation for statistical classifiers. J. Artif. Intell. Res. 26, 101–126 (2006)
Ernst, P., Siu, A., Weikum, G.: KnoWlife: a versatile approach for constructing a large knowledge graph for biomedical sciences. BMC Bioinform. 16, 1 (2015)
Guo, S., Wang, Q., Wang, L., Wang, B., Guo, L.: Knowledge graph embedding with iterative guidance from soft rules. arXiv preprint arXiv:1711.11231 (2017)
He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (2016)
He, R., Kang, W.-C., McAuley, J.: Translation-based recommendation. In: Proceedings of the Eleventh ACM Conference on Recommender Systems (2017)
Huang, X., Zhang, J., Li, D., Li, P.: Knowledge graph embedding based question answering. In: International Conference on Web Search and Data Mining (WSDM) (2019)
Ji, G., He, S., Xu, L., Liu, K., Zhao, J.: Knowledge graph embedding via dynamic mapping matrix. In: Association for Computational Linguistics and International Joint Conference on Natural Language Processing (ACL-IJCNLP) (2015)
Ji, G., Liu, K., He, S., Zhao, J.: Knowledge graph completion with adaptive sparse transfer matrix. In: Schuurmans, D., Wellman, M.P. (eds.) International Conference on Artificial Intelligence (AAAI) (2016)
Jia, Y., Wang, Y., Lin, H., Jin, X., Cheng, X.: Locally adaptive translation for knowledge graph embedding. In: International Conference on Artificial Intelligence (AAAI) (2016)
Johansson, F., Shalit, U., Sontag, D.: Learning representations for counterfactual inference. In: International Conference on Machine Learning (ICML) (2016)
Krishnan, A., Das, M., Bendre, M., Yang, H., Sundaram, H.: Transfer learning via contextual invariants for one-to-many cross-domain recommendation. arXiv preprint arXiv:2005.10473 (2020)
Krishnan, A., Sharma, A., Sundaram, H.: Insights from the long-tail: learning latent representations of online user behavior in the presence of skew and sparsity. In: International Conference on Information and Knowledge Management (CIKM) (2018)
Lerer, A., et al.: PyTorch-BigGraph: a large-scale graph embedding system. arXiv preprint arXiv:1903.12287 (2019)
Li, W.: Zipf’s law everywhere. Glottometrics 5, 14–21 (2002)
Lin, Y., Liu, Z., Sun, M., Liu, Y., Zhu, X.: Learning entity and relation embeddings for knowledge graph completion. In: International Conference on Artificial Intelligence (AAAI) (2015)
Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds and algorithms. arXiv preprint arXiv:0902.3430 (2009)
Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., Dean, J.: Distributed representations of words and phrases and their compositionality. In: Advances in Neural Information Processing Systems (NIPS) (2013)
Vu, T., Nguyen, T.D., Nguyen, D.Q., Phung, D.: A capsule network-based embedding model for knowledge graph completion and search personalization. In: North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT) (2019)
Nickel, M., Tresp, V.: An analysis of tensor models for learning on structured data. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8189, pp. 272–287. Springer, Heidelberg (2013a). https://doi.org/10.1007/978-3-642-40991-2_18
Nickel, M., Tresp, V.: Tensor factorization for multi-relational learning. In: Blockeel, H., Kersting, K., Nijssen, S., Železný, F. (eds.) ECML PKDD 2013. LNCS (LNAI), vol. 8190, pp. 617–621. Springer, Heidelberg (2013b). https://doi.org/10.1007/978-3-642-40994-3_40
Pasricha, R., McAuley, J.: Translation-based factorization machines for sequential recommendation. In: International Conference on Recommender Systems (RecSys) (2018)
Sun, Z., Deng, Z.-H., Nie, J.-Y., Tang, J.: RotatE: knowledge graph embedding by relational rotation in complex space. arXiv preprint arXiv:1902.10197 (2019)
Sun, Z., Yang, J., Zhang, J., Bozzon, A., Huang, L.-K., Xu, C.: Recurrent knowledge graph embedding for effective recommendation. In: International Conference on Recommender Systems (RecSys) (2018)
Trouillon, T., Welbl, J., Riedel, S., Gaussier, É., Bouchard, G.: Complex embeddings for simple link prediction. In: International Conference on Machine Learning (ICML) (2016)
Wang, R., Li, B., Hu, S., Du, W., Zhang, M.: Knowledge graph embedding via graph attenuated attention networks. IEEE Access 8, 5212–5224 (2019)
Wang, X., He, X., Cao, Y., Liu, M., Chua, T.-S.: KGAT: knowledge graph attention network for recommendation. In: International Conference on Knowledge Discovery & Data Mining (SIGKDD) (2019)
Wang, Z., et al.: XLore: a large-scale English-Chinese bilingual knowledge graph. In: International Semantic Web Conference (ISWC) (2013)
Wang, Z., Zhang, J., Feng, J., Chen, Z.: Knowledge graph embedding by translating on hyperplanes. In: International Conference on Artificial Intelligence (AAAI) (2014)
Yang, B., Yih, W., He, X., Gao, J., Deng, L.: Embedding entities and relations for learning and inference in knowledge bases. arXiv preprint arXiv:1412.6575 (2014)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Krishnan, A., Das, M., Bendre, M., Wang, F., Yang, H., Sundaram, H. (2022). Multi-task Knowledge Graph Representations via Residual Functions. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13280. Springer, Cham. https://doi.org/10.1007/978-3-031-05933-9_21
Download citation
DOI: https://doi.org/10.1007/978-3-031-05933-9_21
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05932-2
Online ISBN: 978-3-031-05933-9
eBook Packages: Computer ScienceComputer Science (R0)