Skip to main content

Joint Feature and Labeling Function Adaptation for Unsupervised Domain Adaptation

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13280))

Included in the following conference series:

Abstract

Unsupervised domain adaptation aims to transfer knowledge from a labeled source domain to an unlabeled target domain. Although having achieved remarkable progress, most existing methods only focus on learning domain-invariant features and achieving a small source error. They ignore the discrepancy between labeling functions which will also cause discrepancy across domains. Inspired by this observation, we propose a novel method to simultaneously perform feature adaptation and labeling function adaptation. Specifically, for the feature adaptation, a domain discriminator is trained to reduce the discrepancy between feature distributions across domains. For the labeling function adaptation, we introduce a target predictor and a predictor discriminator. The target predictor is trained on target samples with pseudo-labels. The predictor discriminator is a novel component and is trained to distinguish whether the prediction output is from the source or the target predictor while the feature extractor and the label predictors try to confuse the predictor discriminator in an adversarial manner. Additionally, the intrinsic characteristics of the target domain are expected to be exploited thanks to the task-specific training. Comprehensive experiments are conducted and results validate the effectiveness of labeling function adaptation and demonstrate that our approach outperforms state-of-the-art methods.

F. Cui and Y. Chen—The first two authors contributed equally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Acuna, D., Zhang, G., Law, M.T., Fidler, S.: f-domain-adversarial learning: theory and algorithms. In: ICML (2021)

    Google Scholar 

  2. Ben-David, S., Blitzer, J., Crammer, K., Kulesza, A., Pereira, F.C., Vaughan, J.W.: A theory of learning from different domains. Mach. Learn. 79, 151–175 (2009)

    Article  MathSciNet  Google Scholar 

  3. Cicek, S., Soatto, S.: Unsupervised domain adaptation via regularized conditional alignment. In: 2019 IEEE/CVF International Conference on Computer Vision (ICCV), pp. 1416–1425 (2019)

    Google Scholar 

  4. Du, Y., Chen, Y., Cui, F., Zhang, X., Wang, C.J.: Cross-domain error minimization for unsupervised domain adaptation. In: DASFAA (2021)

    Google Scholar 

  5. Du, Y., Tan, Z., Chen, Q., Zhang, X., Yao, Y., Wang, C.J.: Dual adversarial domain adaptation. ArXiv abs/2001.00153 (2020)

    Google Scholar 

  6. Du, Y., Yang, H., Chen, M., Jiang, J., Luo, H., Wang, C.J.: Generation, augmentation, and alignment: a pseudo-source domain based method for source-free domain adaptation. ArXiv abs/2109.04015 (2021)

    Google Scholar 

  7. Fu, B., Cao, Z., Wang, J., Long, M.: Transferable query selection for active domain adaptation. In: CVPR, pp. 7268–7277 (2021)

    Google Scholar 

  8. Ganin, Y., Lempitsky, V.: Unsupervised domain adaptation by backpropagation. In: ICML (2015)

    Google Scholar 

  9. Ganin, Y., et al.: Domain-adversarial training of neural networks. J. Mach. Learn. Res. 17, 59:1–59:35 (2016)

    Google Scholar 

  10. Ghifary, M., Kleijn, W., Zhang, M., Balduzzi, D., Li, W.: Deep reconstruction-classification networks for unsupervised domain adaptation. In: ECCV (2016)

    Google Scholar 

  11. Goodfellow, I.J., et al.: Generative adversarial nets. In: NIPS (2014)

    Google Scholar 

  12. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778 (2016)

    Google Scholar 

  13. Kumar, A., et al.: Co-regularized alignment for unsupervised domain adaptation. In: NeurIPS (2018)

    Google Scholar 

  14. Li, M., Ming Zhai, Y., Luo, Y.W., Ge, P., Ren, C.X.: Enhanced transport distance for unsupervised domain adaptation. In: CVPR (2020)

    Google Scholar 

  15. Liang, J., Hu, D., Feng, J.: Do we really need to access the source data? Source hypothesis transfer for unsupervised domain adaptation. In: ICML (2020)

    Google Scholar 

  16. Liu, H., Long, M., Wang, J., Jordan, M.I.: Transferable adversarial training: a general approach to adapting deep classifiers. In: ICML (2019)

    Google Scholar 

  17. Liu, X., et al.: Adversarial unsupervised domain adaptation with conditional and label shift: infer, align and iterate. In: ICCV (2021)

    Google Scholar 

  18. Long, M., Cao, Y., Wang, J., Jordan, M.I.: Learning transferable features with deep adaptation networks. In: ICML (2015)

    Google Scholar 

  19. Long, M., Cao, Z., Wang, J., Jordan, M.I.: Conditional adversarial domain adaptation. In: NeurIPS (2018)

    Google Scholar 

  20. Long, M., Wang, J., Ding, G., Sun, J., Yu, P.: Transfer feature learning with joint distribution adaptation. In: 2013 IEEE International Conference on Computer Vision, pp. 2200–2207 (2013)

    Google Scholar 

  21. Long, M., Zhu, H., Wang, J., Jordan, M.I.: Deep transfer learning with joint adaptation networks. ArXiv abs/1605.06636 (2017)

    Google Scholar 

  22. Luo, Y., Zhu, J., Li, M., Ren, Y., Zhang, B.: Smooth neighbors on teacher graphs for semi-supervised learning. In: CVPR, pp. 8896–8905 (2018)

    Google Scholar 

  23. Mansour, Y., Mohri, M., Rostamizadeh, A.: Domain adaptation: learning bounds and algorithms. In: COLT (2009)

    Google Scholar 

  24. Pan, S., Yang, Q.: A survey on transfer learning. IEEE Trans. Knowl. Data Eng. 22, 1345–1359 (2010)

    Article  Google Scholar 

  25. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115, 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  26. Saenko, K., Kulis, B., Fritz, M., Darrell, T.: Adapting visual category models to new domains. In: ECCV (2010)

    Google Scholar 

  27. Saito, K., Ushiku, Y., Harada, T.: Asymmetric tri-training for unsupervised domain adaptation. In: ICML (2017)

    Google Scholar 

  28. Saito, K., Watanabe, K., Ushiku, Y., Harada, T.: Maximum classifier discrepancy for unsupervised domain adaptation. In: CVPR, pp. 3723–3732 (2018)

    Google Scholar 

  29. Sankaranarayanan, S., Balaji, Y., Castillo, C.D., Chellappa, R.: Generate to adapt: aligning domains using generative adversarial networks. In: CVPR, pp. 8503–8512 (2018)

    Google Scholar 

  30. Shu, R., Bui, H.H., Narui, H., Ermon, S.: A DIRT-T approach to unsupervised domain adaptation. In: ICLR (2018)

    Google Scholar 

  31. Tzeng, E., Hoffman, J., Saenko, K., Darrell, T.: Adversarial discriminative domain adaptation. In: CVPR, pp. 2962–2971 (2017)

    Google Scholar 

  32. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing network for unsupervised domain adaptation. In: CVPR, pp. 5385–5394 (2017)

    Google Scholar 

  33. Wang, J., Feng, W., Chen, Y., Yu, H., Huang, M., Yu, P.S.: Visual domain adaptation with manifold embedded distribution alignment. In: MM 2018 (2018)

    Google Scholar 

  34. Wang, M., Deng, W.: Deep visual domain adaptation: a survey. Neurocomputing 312, 135–153 (2018)

    Article  Google Scholar 

  35. Xu, X., Zhou, X., Venkatesan, R., Swaminathan, G., Majumder, O.: d-SNE: domain adaptation using stochastic neighborhood embedding. In: CVPR, pp. 2492–2501 (2019)

    Google Scholar 

  36. Yang, J., Zou, H., Zhou, Y., Zeng, Z., Xie, L.: Mind the discriminability: asymmetric adversarial domain adaptation. In: ECCV (2020)

    Google Scholar 

  37. Yu, C., Wang, J., Chen, Y., Huang, M.: Transfer learning with dynamic adversarial adaptation network. In: 2019 IEEE International Conference on Data Mining (ICDM), pp. 778–786 (2019)

    Google Scholar 

  38. Zhang, Y., Tang, H., Jia, K., Tan, M.: Domain-symmetric networks for adversarial domain adaptation. In: CVPR, pp. 5026–5035 (2019)

    Google Scholar 

  39. Zhang, Y., Liu, T., Long, M., Jordan, M.I.: Bridging theory and algorithm for domain adaptation. In: ICML (2019)

    Google Scholar 

  40. Zhao, H., des Combes, R.T., Zhang, K., Gordon, G.J.: On learning invariant representation for domain adaptation. In: ICML (2019)

    Google Scholar 

Download references

Acknowledgement

This paper is supported by the National Key Research and Development Program of China (Grant No. 2018YFB1403400), the National Natural Science Foundation of China (Grant No. 61876080), the Key Research and Development Program of Jiangsu (Grant No. BE2019105), the Collaborative Innovation Center of Novel Software Technology and Industrialization at Nanjing University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chongjun Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Cui, F., Chen, Y., Du, Y., Cao, Y., Wang, C. (2022). Joint Feature and Labeling Function Adaptation for Unsupervised Domain Adaptation. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13280. Springer, Cham. https://doi.org/10.1007/978-3-031-05933-9_34

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05933-9_34

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05932-2

  • Online ISBN: 978-3-031-05933-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics