Skip to main content

High Average-Utility Itemset Sampling Under Length Constraints

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13281))

Included in the following conference series:

Abstract

High Utility Itemset extraction algorithms are methods for discovering knowledge in a database where the items are weighted. Their usefulness has been widely demonstrated in many real world applications. The traditional algorithms return the set of all patterns with a utility above a minimum utility threshold which is difficult to fix, while top-k algorithms tend to lack of diversity in the produced patterns. We propose an algorithm named \(\textsc {HAISampler}\) to sample itemsets where each itemset is drawn with a probability proportional to its average-utility in the database and under length constraints to avoid the long and rare itemsets with low weighted items. The originality of our method stems from the fact that it combines length constraints with qualitative and quantitative utilities. Experiments show that \(\textsc {HAISampler}\) extracts thousands of high average-utility patterns in a few seconds from different databases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Proof of theoretical results are available in Sect. A.

  2. 2.

    By convention \(\left( {\begin{array}{c}n\\ k\end{array}}\right) \)  = 0 if k>n and 1 if k = 0.

  3. 3.

    \(\textsc {HAISampler}\) (Python 3.8) https://github.com/HAISampler/haisampler-src.

  4. 4.

    Each item was associated with a utility taken randomly between 1 and 100.

  5. 5.

    http://www.philippe-fournier-viger.com/spmf.

  6. 6.

    https://code.activestate.com/recipes/546530-size-of-python-objects-revised/.

References

  1. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules in large databases. In: VLDB’94, pp. 487–499. Morgan Kaufmann Publishers Inc. (1994)

    Google Scholar 

  2. Ahmed, C.F., Tanbeer, S.K., Jeong, B., Lee, Y.: Efficient tree structures for high utility pattern mining in incremental databases. IEEE Trans. Knowl. Data Eng. 21(12), 1708–1721 (2009)

    Article  Google Scholar 

  3. Al Hasan, M., Zaki, M.J.: Output space sampling for graph patterns. Proc. VLDB Endow. 2(1), 730–741 (2009)

    Google Scholar 

  4. Boley, M., Lucchese, C., Paurat, D., Gärtner, T.: Direct local pattern sampling by efficient two-step random procedures. In: Proceedings of the 17th ACM SIGKDD, pp. 582–590 (2011)

    Google Scholar 

  5. Boley, M., Moens, S., Gärtner, T.: Linear space direct pattern sampling using coupling from the past. In: Proceedings of the 18th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 69–77. ACM (2012)

    Google Scholar 

  6. Chu, C.J., Tseng, V.S., Liang, T.: An efficient algorithm for mining temporal high utility itemsets from data streams. J. Syst. Softw. 81(7), 1105–1117 (2008)

    Article  Google Scholar 

  7. Diop, L., Diop, C.T., Giacometti, A., Li, D., Soulet, A.: Sequential pattern sampling with norm-based utility. Knowl. Inf. Syst. 62(5), 2029–2065 (2019). https://doi.org/10.1007/s10115-019-01417-3

    Article  Google Scholar 

  8. Diop, L., Diop, C.T., Giacometti, A., Li Haoyuan, D., Soulet, A.: Sequential pattern sampling with norm constraints. In: IEEE International Conference on Data Mining (ICDM), Singapore, November 2018

    Google Scholar 

  9. Diop, L., Diop, C.T., Giacometti, A., Soulet, A.: Pattern on demand in transactional distributed databases. Inf. Syst. 104, 101908 (2022)

    Google Scholar 

  10. Dzyuba, V., Leeuwen, M.V., Nijssen, S., De Raedt, L.: Interactive learning of pattern rankings. Int. J. Artif. Intell. Tools 23(06), 1460026 (2014)

    Google Scholar 

  11. Giacometti, A., Soulet, A.: Anytime algorithm for frequent pattern outlier detection. Int. J. Data Sci. Anal. 5, 119–130 (2016). https://doi.org/10.1007/s41060-016-0019-9

  12. Giacometti, A., Soulet, A.: Dense neighborhood pattern sampling in numerical data. In: Proceedings of SDM 2018, pp. 756–764 (2018)

    Google Scholar 

  13. Leeuwen, M.: Interactive data exploration using pattern mining. In: Holzinger, A., Jurisica, I. (eds.) Interactive Knowledge Discovery and Data Mining in Biomedical Informatics. LNCS, vol. 8401, pp. 169–182. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43968-5_9

  14. Li, H., Huang, H., Chen, Y., Liu, Y., Lee, S.: Fast and memory efficient mining of high utility itemsets in data streams. In: 2008 Eighth IEEE International Conference on Data Mining, pp. 881–886, December 2008

    Google Scholar 

  15. Lin, J.C.W., Li, T., Fournier-Viger, P., Hong, T.P., Zhan, J., Voznak, M.: An efficient algorithm to mine high average-utility itemsets. Adv. Eng. Inform. 30(2), 233–243 (2016)

    Article  Google Scholar 

  16. Shie, B.-E., Hsiao, H.-F., Tseng, V.S., Yu, P.S.: Mining high utility mobile sequential patterns in mobile commerce environments. In: Yu, J.X., Kim, M.H., Unland, R. (eds.) DASFAA 2011. LNCS, vol. 6587, pp. 224–238. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-20149-3_18

  17. Shie, B.E., Yu, P.S., Tseng, V.S.: Mining interesting user behavior patterns in mobile commerce environments. Appl. Intell. 38(3), 418–435 (2013)

    Article  Google Scholar 

  18. Singh, K., Singh, S.S., Kumar, A., Biswas, B.: TKEH: an efficient algorithm for mining top-k high utility itemsets. Appl. Intell. 49(3), 1078–1097 (2019). https://doi.org/10.1007/s10489-018-1316-x

  19. Song, W., Zheng, C., Huang, C., Liu, L.: Heuristically mining the top-k high-utility itemsets with cross-entropy optimization. Appl. Intell., 1–16 (2021). https://doi.org/10.1007/s10489-021-02576-z

  20. Tseng, V.S., Wu, C., Fournier-Viger, P., Yu, P.S.: Efficient algorithms for mining the concise and lossless representation of high utility itemsets. IEEE Trans. Knowl. Data Eng. 27(3), 726–739 (2015)

    Article  Google Scholar 

  21. Yao, H., Hamilton, H.J., Butz, C.J.: A foundational approach to mining itemset utilities from databases. In: Proceedings of the Third SIAM International Conference on Data Mining, pp. 482–486 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lamine Diop .

Editor information

Editors and Affiliations

A Appendix (Proof of Theoretical Results)

A Appendix (Proof of Theoretical Results)

Proof

(Property 1). Let’s start by showing that \(\omega ^-_{\ell }(t [i], t)= \sum _{\star \in \{+,-\}}\omega ^\star _{\ell }(t [i+1], t)\). By definition, \(\omega ^-_{\ell }(t [i], t)\) is the sum of the utilities of the set of patterns of length \(\ell \) in \(t ^i\), \(\omega ^-_{\ell }(t [i], t)=\sum _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell } \texttt {uOcc} (\varphi ,t)\). This set can be split into two parts: the one that contains the patterns starting with the item \(t [i+1]\) whose sum of their utilities is equal to \(\omega ^+_{\ell }(t [i+1], t)\) by definition, and the one that contains the patterns not starting with \(t [i+1]\) and whose sum of their utilities is equal to \(\omega ^-_{\ell }(t [i+1], t)\). It implies that

$$\begin{aligned} \sum \nolimits _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell } \texttt {uOcc} (\varphi ,t)=\omega ^+_{\ell }(t [i+1], t)+\omega ^-_{\ell }(t [i+1], t)=\sum \nolimits _{\star \in \{+,-\}}\omega ^\star _{\ell }(t [i+1], t). \end{aligned}$$
(1)

Let’s show that \(\omega ^+_{\ell }(t [i], t)= \omega _{1}^+(t [i], t)\times \left( {\begin{array}{c}{|{t ^i}|} \\ \ell -1\end{array}}\right) + \sum _{\star \in \{+,-\}}\omega ^\star _{\ell -1}(t [i+1], t)\). We know by definition that \(\omega ^+_{\ell }(t [i], t)\) is the sum of utilities of itemsets of length \(\ell \) in \(t ^{i-1}\) which start with \(t [i]\) following the total order relation \(>_\mathcal{I}\). Formally, we have: \(\omega ^+_{\ell }(t [i], t)=\sum _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell -1} \texttt {uOcc} (\{t [i]\} \cup \varphi ,t)\). But \(\texttt {uOcc} (\{t [i]\} \cup \varphi ,t)= \texttt {uOcc} (\{t [i]\},t) + \texttt {uOcc} (\varphi ,t)\) by definition. Then, \(\omega ^+_{\ell }(t [i], t)=\sum _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell -1} \left( \texttt {uOcc} (\{t [i]\},t) + \texttt {uOcc} (\varphi ,t) \right) \). This implies: \(\omega ^+_{\ell }(t [i], t)=\sum _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell -1} \texttt {uOcc} (\{t [i]\},t) + \sum _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell -1} \texttt {uOcc} (\varphi ,t)\). However, we know on the one hand that \(\sum _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell -1} \texttt {uOcc} (\{t [i]\},t)=\texttt {uOcc} (\{t [i]\},t) \times \left( {\begin{array}{c}{|{t ^i}|} \\ \ell -1\end{array}}\right) \) and \(\texttt {uOcc} (\{t [i]\},t)=\omega ^+_{1}(t [i], t)\) by definition, so \(\sum _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell -1}\texttt {uOcc} (\{t [i]\},t)= \omega ^+_{1}(t [i], t) \times \left( {\begin{array}{c}{|{t ^i}|} \\ \ell -1\end{array}}\right) \). On the other hand, \(\sum _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell -1} \texttt {uOcc} (\varphi ,t)\) is the sum of utilities of the set of patterns of length \(\ell -1\) in the transaction \(t ^i\). From (1), we can also say that \(\sum _{\varphi \subseteq t ^i \wedge {|{\varphi }|} =\ell -1} \texttt {uOcc} (\varphi ,t)=\sum _{\star \in \{+,-\}}\omega ^\star _{\ell -1}(t [i+1], t)\). Then we have: \(\omega ^+_{\ell }(t [i], t)=\omega _{1}(t [i], t)\times \left( {\begin{array}{c}{|{t ^i}|} \\ \ell -1\end{array}}\right) + \sum _{\star \in \{+,-\}}\omega ^\star _{\ell -1}(t [i+1], t)\). Hence the result. \(\square \)

Proof

(Property 2). By definition, the weight of the transaction \(t\) is the sum of the average-utilities of the pattern occurrences it contains. According to Property 1, the weight of the transaction \(t\) under the minimum \(m\) and maximum \(M\) length constraints is nothing more than the sum of the average-utilities of pattern occurrences that start with the item \(t [1]\) and respect the imposed length constraints, \(\sum _{\ell =m}^{M}(\frac{1}{\ell } \times \omega ^+_{\ell }(t [1], t))\), and that of the patterns that do not start with the item \(t [1]\) but respect the length constraints, \(\sum _{\ell =m}^{M}(\frac{1}{\ell } \times \omega ^-_{\ell }(t [1], t))\). However, we know that \(\sum _{\ell =m}^{M}(\frac{1}{\ell } \times \omega ^+_{\ell }(t [1], t))+\sum _{\ell =m}^{M}(\frac{1}{\ell } \times \omega ^-_{\ell }(t [1], t))=\sum _{\ell =m}^{M}\frac{1}{\ell } \times \left( \omega ^+_{\ell }(t [1], t) + \omega ^-_{\ell }(t [1], t) \right) .\) Hence the result. \(\square \)

Proof

(Lemma 1). By definition, the probability to draw the item \(t [i]\) of the transaction \(t\) after having drawing from it \(\ell -\ell '\) items and store them in \(\varphi \) is nothing more than the probability of drawing a pattern that begins with \(\varphi \cup \{t [i]\}\), according to the order relation \(>_\mathcal{I}\), among the set of patterns that start with \(\varphi \). On the one hand, we know that the set of patterns of length \(\ell \) that start with \(\varphi \cup t [i]\) is defined by \(\{\varphi ''\subseteq t:(\varphi ''=\varphi \cup \{t [i]\}\cup \varphi ')(\varphi '\subseteq t ^i)({|{\varphi '}|} =\ell '-1)\}\). The sum of utilities of the patterns of this set is equal to \(\sum _{\varphi '\subseteq t ^i\wedge {|{\varphi '}|} =\ell '-1}\texttt {uOcc} (\varphi \cup \{t [i]\}\cup \varphi ', t)\). On the other hand, we know that the set of patterns of length \(\ell \) that start with \(\varphi \) is defined by \(\{\varphi ''\subseteq t:(\varphi ''=\varphi \cup \varphi ')(\varphi '\subseteq t ^{i-1})({|{\varphi '}|} =\ell ')\}\). The sum of utilities of the patterns of this set is equal to \(\sum _{\varphi '\subseteq t ^{i-1}\wedge {|{\varphi '}|} =\ell '}\texttt {uOcc} (\varphi \cup \varphi ', t)\). So \( \mathbb {P} _\ell ^t (t [i]|\varphi , \ell ')= \frac{\sum _{\varphi '\subseteq t ^i \wedge {|{\varphi '}|} =\ell '-1} \texttt {uOcc} (\varphi \cup \{t [i]\}\cup \varphi ',t)}{\sum _{\varphi '\subseteq t ^{i-1} \wedge {|{\varphi '}|} =\ell '} \texttt {uOcc} (\varphi \cup \varphi ',t)} \). Hence the result. \(\square \)

Proof

(Property 3). From Lemma 1, we have:

\( \mathbb {P} _\ell ^t (t [i]|\varphi , \ell ')= \frac{\sum _{\varphi '\subseteq t ^i \wedge {|{\varphi '}|} =\ell '-1} \texttt {uOcc} (\varphi \cup \{t [i]\}\cup \varphi ',t)}{\sum _{\varphi '\subseteq t ^{i-1} \wedge {|{\varphi '}|} =\ell '} \texttt {uOcc} (\varphi \cup \varphi ',t)} \). First, by definition we have \(\texttt {uOcc} (\varphi \cup \{t [i]\}\cup \varphi ',t)=\texttt {uOcc} (\varphi ,t)+\texttt {uOcc} (\{t [i]\}\cup \varphi ',t)\). Let \(z_i=\sum _{\varphi '\subseteq t ^i \wedge {|{\varphi '}|} =\ell '-1} \texttt {uOcc} (\varphi \cup \{t [i]\}\cup \varphi ',t)\). It implies that \(z_i=\sum _{\varphi '\subseteq t ^i \wedge {|{\varphi '}|} =\ell '-1} \left( \texttt {uOcc} (\varphi ,t)+\texttt {uOcc} (\{t [i]\}\cup \varphi ',t) \right) \). Then we have: \(z_i = \sum _{\varphi '\subseteq t ^i \wedge {|{\varphi '}|} =\ell '-1} \texttt {uOcc} (\varphi ,t)+ \sum _{\varphi '\subseteq t ^i \wedge {|{\varphi '}|} =\ell '-1}\texttt {uOcc} (\{t [i]\}\cup \varphi ',t)\). But \(\sum _{\varphi '\subseteq t ^i \wedge {|{\varphi '}|} =\ell '-1} \texttt {uOcc} (\varphi ,t)=\texttt {uOcc} (\varphi ,t)\times \left( {\begin{array}{c}{|{t ^i}|} \\ \ell '-1\end{array}}\right) \) and \(\sum _{\varphi '\subseteq t ^i \wedge {|{\varphi '}|} =\ell '-1}\texttt {uOcc} (\{t [i]\}\cup \varphi ',t)=\omega _{\ell '}^+(t [i],t)\) by definition. Then \(z_i = \texttt {uOcc} (\varphi ,t)\times \left( {\begin{array}{c}{|{t ^i}|} \\ \ell '-1\end{array}}\right) +\omega _{\ell '}^+(t [i],t)\). We also know that \(\texttt {uOcc} (\varphi ,t)=\sum _{k<i\wedge t [k]\in \varphi }\omega _1^+(t [k], t)\). So, \(z_i = \left( \sum _{k<i\wedge t [k]\in \varphi }\omega _1^+(t [k], t) \right) \times \left( {\begin{array}{c}{|{t ^i}|} \\ \ell '-1\end{array}}\right) +\omega _{\ell '}^+(t [i],t)\). Second, we have \(\texttt {uOcc} (\varphi \cup \varphi ',t)=\texttt {uOcc} (\varphi ,t)+\texttt {uOcc} (\varphi ',t)\). By setting \(Z_i=\sum _{\varphi '\subseteq t ^{i-1} \wedge {|{\varphi '}|} =\ell '} \texttt {uOcc} (\varphi \cup \varphi ',t)\), we get then \(Z_i=\sum _{\varphi '\subseteq t ^{i-1} \wedge {|{\varphi '}|} =\ell '} \texttt {uOcc} (\varphi ,t)+ \sum _{\varphi '\subseteq t ^{i-1} \wedge {|{\varphi '}|} =\ell '}\texttt {uOcc} (\varphi ',t)\). But \(\sum _{\varphi '\subseteq t ^{i-1} \wedge {|{\varphi '}|} =\ell '} \texttt {uOcc} (\varphi ,t)= \texttt {uOcc} (\varphi ,t)\times \left( {\begin{array}{c}{|{t ^{i-1}}|} \\ \ell '\end{array}}\right) =\left( \sum _{k<i\wedge t [k]\in \varphi }\omega _1^+(t [k], t) \right) \times \left( {\begin{array}{c}{|{t ^{i-1}}|} \\ \ell '\end{array}}\right) \) et \(\sum _{\varphi '\subseteq t ^{i-1} \wedge {|{\varphi '}|} =\ell '}\texttt {uOcc} (\varphi ',t)=\sum _{\star \in \{+,-\}}\omega ^\star _{\ell '}(t [i],t)\), so \(Z_i=\left( \sum _{k<i\wedge t [k]\in \varphi }\omega _1^+(t [k], t) \right) \times \left( {\begin{array}{c}{|{t ^{i-1}}|} \\ \ell '\end{array}}\right) + \sum _{\star \in \{+,-\}}\omega ^\star _{\ell '}(t [i],t).\)

Finally, \(\mathbb {P} _\ell ^t (t [i]|\varphi , \ell ')=\frac{z_i}{Z_i}=\frac{\left( \sum _{k<i\wedge t [k]\in \varphi }\omega _1^+(t [k], t) \right) \times \left( {\begin{array}{c}{|{t ^i}|} \\ \ell '-1\end{array}}\right) +\omega _{\ell '}^+(t [i],t)}{\left( \sum _{k<i\wedge t [k]\in \varphi }\omega _1^+(t [k], t) \right) \times \left( {\begin{array}{c}{|{t ^{i-1}}|} \\ \ell '\end{array}}\right) + \sum _{\star \in \{+,-\}}\omega ^\star _{\ell '}(t [i],t)}\). \(\square \)

Proof

(Property 4). Let \(m\) be the minimum and \(M\) the maximum length constraints, the probability of drawing the pattern \(\varphi \) of length \(\ell \) in the database \(\mathcal{D}\) denoted by \(\mathbb {P} _{[m..M ]}(\varphi ,\mathcal{D})\), and Z a normalization constant defined by \(Z=\sum _{\varphi '\in \mathcal{L} (\mathcal{D})}u^{avg} _{[m..M ]}(\varphi ',\mathcal{D})\). We know that : \(\mathbb {P} _{[m..M ]}(\varphi ,\mathcal{D})=\sum _{(j,t) \in \mathcal{D}}\left( \mathbb {P} _{[m..M ]}(t _j,\mathcal{D}) \times \mathbb {P} _{[m..M ]}(\varphi , t _j) \right) \). But \( \mathbb {P} _{[m..M ]}(t _j,\mathcal{D})=\frac{\omega ^{avgU} _{[m..M ]}(t _j)}{Z}\), then

$$\begin{aligned} \mathbb {P} _{[m..M ]}(\varphi ,\mathcal{D})=\sum \nolimits _{(j,t) \in \mathcal{D}}\left( \frac{\omega ^{avgU} _{[m..M ]}(t _j)}{Z} \times \mathbb {P} _{[m..M ]}(\varphi , t _j) \right) . \end{aligned}$$
(2)

We also know that:

$$\begin{aligned} \mathbb {P} _{[m..M ]}(\varphi , t _j)=\mathbb {P} _{[m..M ]}(\ell |t _j)\times \mathbb {P} _{[m..M ]}^{t _j}(\varphi |\ell ). \end{aligned}$$
(3)

\(\mathbb {P} _{[m..M ]}(\ell |t _j)=\frac{\omega ^{avgU} _{[\ell ..\ell ]}(t _j)}{\omega ^{avgU} _{[m..M ]}(t _j)}\) and \(\mathbb {P} _{[m..M ]}^{t _j}(\varphi |\ell )=\frac{\texttt {uOcc} (\varphi ,t _j)}{\omega ^{avgU} _{[\ell ..\ell ]}(t _j)\times \ell }\) then by substituting the two terms in (3), \(\mathbb {P} _{[m..M ]}(\varphi , t _j)=\frac{\omega ^{avgU} _{[\ell ..\ell ]}(t _j)}{\omega ^{avgU} _{[m..M ]}(t _j)} \times \frac{\texttt {uOcc} (\varphi ,t _j)}{\omega ^{avgU} _{[\ell ..\ell ]}(t _j)\times \ell }=\frac{\texttt {uOcc} (\varphi ,t _j)}{\omega ^{avgU} _{[m..M ]}(t _j)\times \ell }\).

Now, if we replace \(\mathbb {P} _{[m..M ]}(\varphi , t _j)\) in (2) by its last expression, we get: \(\mathbb {P} _{[m..M ]}(\varphi ,\mathcal{D})=\sum _{(j,t) \in \mathcal{D}}\left( \frac{\omega ^{avgU} _{[m..M ]}(t _j)}{Z} \times \frac{\texttt {uOcc} (\varphi ,t _j)}{\omega ^{avgU} _{[m..M ]}(t _j)\times \ell }\right) =\frac{1}{Z} \times \frac{\sum _{(j,t) \in \mathcal{D}} \texttt {uOcc} (\varphi ,t _j)}{\ell }\). But by definition, we have \(\frac{\sum _{(j,t) \in \mathcal{D}} \texttt {uOcc} (\varphi ,t _j)}{\ell }=u^{avg} _{[m..M ]}(\varphi ,\mathcal{D})\), so \(\mathbb {P} _{[m..M ]}(\varphi ,\mathcal{D})=\frac{u^{avg} _{[m..M ]}(\varphi ,\mathcal{D})}{Z}.\) Hence the result. \(\square \)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Diop, L. (2022). High Average-Utility Itemset Sampling Under Length Constraints. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13281. Springer, Cham. https://doi.org/10.1007/978-3-031-05936-0_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05936-0_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05935-3

  • Online ISBN: 978-3-031-05936-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics