Skip to main content

Contrastive Attributed Network Anomaly Detection with Data Augmentation

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13281))

Included in the following conference series:

Abstract

Attributed networks are a type of graph structured data used in many real-world scenarios. Detecting anomalies on attributed networks has a wide spectrum of applications such as spammer detection and fraud detection. Although this research area draws increasing attention in the last few years, previous works are mostly unsupervised because of expensive costs of labeling ground truth anomalies. Many recent studies have shown different types of anomalies are often mixed together on attributed networks and such invaluable human knowledge could provide complementary insights in advancing anomaly detection on attributed networks. To this end, we study the novel problem of modeling and integrating human knowledge of different anomaly types for attributed network anomaly detection. Specifically, we first model prior human knowledge through a novel data augmentation strategy. We then integrate the modeled knowledge in a Siamese graph neural network encoder through a well-designed contrastive loss. In the end, we train a decoder to reconstruct the original networks from the node representations learned by the encoder, and rank nodes according to its reconstruction error as the anomaly metric. Experiments on five real-world datasets demonstrate that the proposed framework outperforms the state-of-the-art anomaly detection algorithms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The anomaly labels in Flickr, Facebook, and Twitter datasets result from manual injection, and the injection rule coincides with two of our data augmentations.

References

  1. Akoglu, L., Tong, H., Koutra, D.: Graph based anomaly detection and description: a survey. Data Min. Knowl. Disc. 29(3), 626–688 (2014). https://doi.org/10.1007/s10618-014-0365-y

    Article  MathSciNet  Google Scholar 

  2. Breunig, M.M., Kriegel, H., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: SIGMOD (2000)

    Google Scholar 

  3. Cao, S., Yang, X., Chen, C., Zhou, J., Li, X., Qi, Y.: Titant: online real-time transaction fraud detection in ant financial. Proc. VLDB Endow. 12(12), 2082–2093 (2019)

    Article  Google Scholar 

  4. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: a survey. ACM Comput. Surv. 41(3), 15:1–15:58 (2009)

    Google Scholar 

  5. Chen, T., Kornblith, S., Norouzi, M., Hinton, G.E.: A simple framework for contrastive learning of visual representations. In: ICML (2020)

    Google Scholar 

  6. Deng, C., Ji, X., Rainey, C., Zhang, J., Lu, W.: Integrating machine learning with human knowledge. iScience 23(11), 101656 (2020)

    Google Scholar 

  7. Ding, K., Li, J., Agarwal, N., Liu, H.: Inductive anomaly detection on attributed networks. In: IJCAI (2020)

    Google Scholar 

  8. Ding, K., Li, J., Bhanushali, R., Liu, H.: Deep anomaly detection on attributed networks. In: SDM (2019)

    Google Scholar 

  9. Ding, K., Li, J., Liu, H.: Interactive anomaly detection on attributed networks. In: WSDM (2019)

    Google Scholar 

  10. Fan, H., Zhang, F., Li, Z.: Anomalydae: dual autoencoder for anomaly detection on attributed networks. In: ICASSP (2020)

    Google Scholar 

  11. Fei, G., Mukherjee, A., Liu, B., Hsu, M., Castellanos, M., Ghosh, R.: Exploiting burstiness in reviews for review spammer detection. In: ICWSM (2013)

    Google Scholar 

  12. Hassani, K., Ahmadi, A.H.K.: Contrastive multi-view representation learning on graphs. In: ICML (2020)

    Google Scholar 

  13. Hjelm, R.D., et al.: Learning deep representations by mutual information estimation and maximization. In: ICLR (2019)

    Google Scholar 

  14. Hu, X., Tang, J., Zhang, Y., Liu, H.: Social spammer detection in microblogging. In: IJCAI (2013)

    Google Scholar 

  15. Huang, X., Li, J., Hu, X.: Label informed attributed network embedding. In: WSDM 2017

    Google Scholar 

  16. Khosla, P., et al.: Supervised contrastive learning (2020)

    Google Scholar 

  17. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. In: ICLR (2015)

    Google Scholar 

  18. Ladickỳ, L., Jeong, S., Solenthaler, B., Pollefeys, M., Gross, M.: Data-driven fluid simulations using regression forests. ACM Trans. Graph. (TOG) 34(6), 1–9 (2015)

    Article  Google Scholar 

  19. Li, J., Dani, H., Hu, X., Liu, H.: Radar: residual analysis for anomaly detection in attributed networks. In: IJCAI (2017)

    Google Scholar 

  20. Liu, N., Huang, X., Hu, X.: Accelerated local anomaly detection via resolving attributed networks. In: IJCAI (2017)

    Google Scholar 

  21. Liu, Y., Li, Z., Pan, S., Gong, C., Zhou, C., Karypis, G.: Anomaly detection on attributed networks via contrastive self-supervised learning. CoRR abs/2103.00113 (2021)

    Google Scholar 

  22. Ma, X., et al.: A comprehensive survey on graph anomaly detection with deep learning (2021)

    Google Scholar 

  23. McAuley, J.J., Leskovec, J.: Learning to discover social circles in ego networks. In: NeurIPS (2012)

    Google Scholar 

  24. Mesquita, D.P.P., Jr., A.H.S., Kaski, S.: Rethinking pooling in graph neural networks. In: NeurIPS (2020)

    Google Scholar 

  25. Müller, E., Sánchez, P.I., Mülle, Y., Böhm, K.: Ranking outlier nodes in subspaces of attributed graphs. In: ICDE Workshop (2013)

    Google Scholar 

  26. Muralidhar, N., Islam, M.R., Marwah, M., Karpatne, A., Ramakrishnan, N.: Incorporating prior domain knowledge into deep neural networks. In: IEEE Big Data (2018)

    Google Scholar 

  27. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: ICML (2010)

    Google Scholar 

  28. Pang, G., Shen, C., Cao, L., van den Hengel, A.: Deep learning for anomaly detection: a review. CoRR abs/2007.02500 (2020)

    Google Scholar 

  29. Peng, Z., Luo, M., Li, J., Liu, H., Zheng, Q.: Anomalous: a joint modeling approach for anomaly detection on attributed networks. In: IJCAI (2018)

    Google Scholar 

  30. Perozzi, B., Akoglu, L.: Scalable anomaly ranking of attributed neighborhoods. In: SDM (2016)

    Google Scholar 

  31. Perozzi, B., Akoglu, L., Sánchez, P.I., Müller, E.: Focused clustering and outlier detection in large attributed graphs. In: KDD (2014)

    Google Scholar 

  32. Qiu, J., et al.: GCC: graph contrastive coding for graph neural network pre-training. In: KDD (2020)

    Google Scholar 

  33. von Rueden, L., et al.: Informed machine learning-a taxonomy and survey of integrating knowledge into learning systems. arXiv preprint arXiv:1903.12394 (2019)

  34. Sánchez, P.I., Müller, E., Irmler, O., Böhm, K.: Local context selection for outlier ranking in graphs with multiple numeric node attributes. In: SSDBM (2014)

    Google Scholar 

  35. Sánchez, P.I., Müller, E., Laforet, F., Keller, F., Böhm, K.: Statistical selection of congruent subspaces for mining attributed graphs. In: ICDM (2013)

    Google Scholar 

  36. Stewart, R., Ermon, S.: Label-free supervision of neural networks with physics and domain knowledge. In: AAAI (2017)

    Google Scholar 

  37. Tian, Y., Krishnan, D., Isola, P.: Contrastive multiview coding. In: ECCV (2020)

    Google Scholar 

  38. Varol, O., Ferrara, E., Davis, C., Menczer, F., Flammini, A.: Online human-bot interactions: detection, estimation, and characterization. In: ICWSM (2017)

    Google Scholar 

  39. Velickovic, P., Cucurull, G., Casanova, A., Romero, A., Liò, P., Bengio, Y.: Graph attention networks. In: ICLR (2018)

    Google Scholar 

  40. Wu, Z., Pan, S., Chen, F., Long, G., Zhang, C., Yu, P.S.: A comprehensive survey on graph neural networks. IEEE Trans. Neural Networks Learn. Syst. 32(1), 4–24 (2021)

    Article  MathSciNet  Google Scholar 

  41. Xu, B., Wang, N., Chen, T., Li, M.: Empirical evaluation of rectified activations in convolutional network. CoRR abs/1505.00853 (2015)

    Google Scholar 

  42. Xu, J.G., Zhao, Y., Chen, J., Han, C.: A structure learning algorithm for bayesian network using prior knowledge. J. Comput. Sci. Technol. 30(4), 713–724 (2015)

    Article  MathSciNet  Google Scholar 

  43. You, Y., Chen, T., Sui, Y., Chen, T., Wang, Z., Shen, Y.: Graph contrastive learning with augmentations. In: NeurIPS (2020)

    Google Scholar 

  44. Zhu, M., Zhu, H.: Mixedad: a scalable algorithm for detecting mixed anomalies in attributed graphs. In: AAAI (2020)

    Google Scholar 

Download references

Acknowledgements

Yushun Dong and Jundong Li are partially supported by the National Science Foundation (NSF) under grants #2006844.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jundong Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Xu, Z., Huang, X., Zhao, Y., Dong, Y., Li, J. (2022). Contrastive Attributed Network Anomaly Detection with Data Augmentation. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13281. Springer, Cham. https://doi.org/10.1007/978-3-031-05936-0_35

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05936-0_35

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05935-3

  • Online ISBN: 978-3-031-05936-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics