Abstract
Cognitive load is an important concept to understand people's cognitive processing performance of information. To assess cognitive load, several methods can be applied. For performance-based measure, Reaction times (RT) tasks can be used. Compared to physiological measures such as electroencephalography, RT tasks can be easily implemented and can be used as an alternative to subjective questionnaires, like NASA-TLX. In this paper we present two evaluation studies of a vibrotactile wearable for RT tasks. The first study evaluates its potential for Choice Reaction Time (CRT) tasks to compare real and virtual settings, the second study uses a simple Reaction Time (RT) task to evaluate cognitive effort on two different VR locomotion techniques while working on tasks in VR. The system is based on a vibrotactile wearable for the cues/stimuli and is suited for VR settings as well as real environments. We argue that such systems allow to compare cognitive performance between real and virtual tasks and discuss the limitation of the system.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Cooper, G.: Cognitive load theory as an aid for instructional design. AJET 6 (1990). https://doi.org/10.14742/ajet.2322
Albers, M.J., Tracy, J.P.: Measuring cognitive load to test the usability of web sites 6 (2006)
Sweller, J.: Cognitive load during problem solving: Effects on learning. Cogn. Sci. 12, 257ā285 (1988). https://doi.org/10.1207/s15516709cog1202_4
Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4, 295ā312 (1994). https://doi.org/10.1016/0959-4752(94)90003-5
Albus, P., Vogt, A., Seufert, T.: Signaling in virtual reality influences learning outcome and cognitive load. Comput. Educ. 166, 104154 (2021). https://doi.org/10.1016/j.compedu.2021.104154
Armougum, A., Orriols, E., Gaston-Bellegarde, A., Marle, C.J.-L., Piolino, P.: Virtual reality: A new method to investigate cognitive load during navigation. J. Environ. Psychol. 65, 101338 (2019). https://doi.org/10.1016/j.jenvp.2019.101338
Sweller, J.: Measuring cognitive load. Persp. Med. Educ. 7(1), 1ā2 (2017). https://doi.org/10.1007/s40037-017-0395-4
Chen, S.: The construct of cognitive load in interpreting and its measurement. Perspectives 25, 640ā657 (2017). https://doi.org/10.1080/0907676X.2016.1278026
Hart, S.G.: Nasa-Task Load Index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting vol. 50, p. 5 (2006)
Kumar, N., Kumar, J.: Measurement of cognitive load in HCI systems using EEG power spectrum: An experimental study. Procedia Comput. Sci. 84, 70ā78 (2016). https://doi.org/10.1016/j.procs.2016.04.068
Antonenko, P., Paas, F., Grabner, R., van Gog, T.: Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22, 425ā438 (2010). https://doi.org/10.1007/s10648-010-9130-y
Jensen, A.R.: Clocking the Mind: Mental Chronometry and Individual Differences. Elsevier (2006)
Schoor, C., Bannert, M., Brünken, R.: Role of dual task design when measuring cognitive load during multimedia learning. Educ. Tech. Res. Dev. 60, 753ā768 (2012). https://doi.org/10.1007/s11423-012-9251-8
Deary, I.J., Liewald, D., Nissan, J.: A free, easy-to-use, computer-based simple and four-choice reaction time programme: The Deary-Liewald reaction time task. Behav Res. 43, 258ā268 (2011). https://doi.org/10.3758/s13428-010-0024-1
Deary, I.J., Der, G.: Reaction time, age, and cognitive ability: Longitudinal findings from age 16 to 63 years in representative population samples. Aging Neuropsychol. Cogn. 12, 187ā215 (2005). https://doi.org/10.1080/13825580590969235
Edman, G., Schalling, D., Levander, S.E.: Impulsivity and speed and errors in a reaction time task: A contribution to the construct validity of the concept of impulsivity. Acta Physiol. (Oxf) 53, 1ā8 (1983). https://doi.org/10.1016/0001-6918(83)90012-4
Cinaz, B., Vogt, C., Arnrich, B., Trƶster, G.: A Wearable user interface for measuring reaction time. In: Keyson, D.V., et al. (eds.) AmI 2011. LNCS, vol. 7040, pp. 41ā50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25167-2_5
Cinaz, B., Vogt, C., Arnrich, B., Trƶster, G.: Implementation and evaluation of wearable reaction time tests. Perv. Mob. Comput. 8, 813ā821 (2012). https://doi.org/10.1016/j.pmcj.2012.06.006
Frommel, J., Sonntag, S., Weber, M.: Effects of controller-based locomotion on player experience in a virtual reality exploration game. In: Proceedings of the 12th International Conference on the Foundations of Digital Games, pp. 1ā6. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3102071.3102082
Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact. 2, 201ā219 (1995). https://doi.org/10.1145/210079.210084
Auda, J., Pascher, M., Schneegass, S.: Around the (Virtual) World: Infinite walking in virtual reality using electrical muscle stimulation. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 431:1ā431:8. ACM, New York (2019). https://doi.org/10.1145/3290605.3300661
Nilsson, N.C., Serafin, S., Steinicke, F., Nordahl, R.: Natural walking in virtual reality: A review. Comput. Entertain. 16, 8:1ā8:22 (2018). https://doi.org/10.1145/3180658
Boletsis, C.: The new era of virtual reality locomotion: A systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1, 24 (2017). https://doi.org/10.3390/mti1040024
Boletsis, C., Cedergren, J.E.: VR locomotion in the new era of virtual reality: An empirical comparison of prevalent techniques. Adv. Hum. Comput. Interact. 2019, 1ā15 (2019). https://doi.org/10.1155/2019/7420781
Juravle, G., Binsted, G., Spence, C.: Tactile suppression in goal-directed movement. Psychon. Bull. Rev. 24(4), 1060ā1076 (2016). https://doi.org/10.3758/s13423-016-1203-6
Hwang, S., Ryu, J.-H.: The haptic steering wheel: Vibro-tactile based navigation for the driving environment. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 660ā665 (2010). https://doi.org/10.1109/PERCOMW.2010.5470517
Suzuki, K., Jansson, H.: An analysis of driverās steering behaviour during auditory or haptic warnings for the designing of lane departure warning system. JSAE Rev. 24, 65ā70 (2003). https://doi.org/10.1016/S0389-4304(02)00247-3
Ho, C., Reed, N., Spence, C.: Assessing the effectiveness of āintuitiveā vibrotactile warning signals in preventing front-to-rear-end collisions in a driving simulator. Accid. Anal. Prev. 38, 988ā996 (2006). https://doi.org/10.1016/j.aap.2006.04.002
Erp, J.B.F.V., Veen, H.A.H.C.V., Jansen, C., Dobbins, T.: Waypoint navigation with a vibrotactile waist belt. ACM Trans. Appl. Percep. 2, 106ā117 (2005). https://doi.org/10.1145/1060581.1060585
Asseman, F., Bronstein, A.M., Gresty, M.A.: Guidance of visual direction by topographical vibrotactile cues on the torso. Exp Brain Res. 186, 283ā292 (2008). https://doi.org/10.1007/s00221-007-1231-6
Li, Y., Jeon, W.R., Nam, C.S.: Navigation by vibration: Effects of vibrotactile feedback on a navigation task. Int. J. Ind. Ergon. 46, 76ā84 (2015). https://doi.org/10.1016/j.ergon.2014.12.008
Meier, A., Matthies, D.J.C., Urban, B., Wettach, R.: Exploring vibrotactile feedback on the body and foot for the purpose of pedestrian navigation. In: Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction - WOAR ā2015. pp. 1ā11. ACM Press, Rostock (2015). https://doi.org/10.1145/2790044.2790051
Pielot, M., Poppinga, B., Heuten, W., Boll, S.: Tacticycle: supporting exploratory bicycle trips. In: Proceedings of the 14th International Conference on Human-Computer Interaction with Mobile Devices and Services - MobileHCI 2012. p. 369. ACM Press, San Francisco (2012). https://doi.org/10.1145/2371574.2371631
Kiss, F., Boldt, R., Pfleging, B., Schneegass, S.: Navigation systems for motorcyclists: Exploring wearable tactile feedback for route guidance in the real world. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 617:1ā617:7. ACM, New York (2018). https://doi.org/10.1145/3173574.3174191
Asif, A., Boll, S.: Where to turn my car? Comparison of a Tactile Display and a Conventional Car Navigation System under High Load Condition, p. 8 (2010)
Cobus, V., Heuten, W., Boll, S.: Multimodal head-mounted display for multimodal alarms in intensive care units. In: Proceedings of the 6th ACM International Symposium on Pervasive Displays, pp. 26:1ā26:2. ACM, New York (2017). https://doi.org/10.1145/3078810.3084349
Cobus, V., Boll, S., Heuten, W.: Requirements for a wearable alarm distribution system in intensive care units. Zukunft der Pflege, p. 5 (2018)
Mateevitsi, V., Haggadone, B., Leigh, J., Kunzer, B., Kenyon, R.V.: Sensing the environment through SpiderSense. In: Proceedings of the 4th Augmented Human International Conference, pp. 51ā57. ACM (2013)
van Erp, J.B.F., Verschoor, M.H.: Cross-modal visual and vibrotactile tracking. Appl. Ergon. 35, 105ā112 (2004). https://doi.org/10.1016/j.apergo.2003.12.004
Jelonek, M., Herrmann, T.: Attentiveness for potential accidents at the construction site: Virtual reality test environment with tactile warnings for behavior tests in hazardous situations. In: Proceedings of Mensch und Computer 2019, pp. 649ā653. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3340764.3344885
Albert, L., Routh, C.: Designing impactful construction safety training interventions. Safety. 7, 42 (2021). https://doi.org/10.3390/safety7020042
Abdelhamid, T.S., Everett, J.G.: Identifying root causes of construction accidents. J. Constr. Eng. Manag. 126, 52ā60 (2000). https://doi.org/10.1061/(ASCE)0733-9364(2000)126:1(52)
Hilfert, T., Kƶnig, M.: Low-cost virtual reality environment for engineering and construction. Visual. Eng. 4(1), 1ā18 (2016). https://doi.org/10.1186/s40327-015-0031-5
Gibb, A., Lingard, H., Behm, M., Cooke, T.: Construction accident causality: learning from different countries and differing consequences. Constr. Manag. Econ. 32, 446ā459 (2014). https://doi.org/10.1080/01446193.2014.907498
Sacks, R., Perlman, A., Barak, R.: Construction safety training using immersive virtual reality. Constr. Manag. Econ. 31, 1005ā1017 (2013). https://doi.org/10.1080/01446193.2013.828844
Fiala, E., Jelonek, M., Herrmann, T.: Using virtual reality simulations to encourage reflective learning in construction workers. In: Zaphiris, P., Ioannou, A. (eds.) HCII 2020. LNCS, vol. 12206, pp. 422ā434. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50506-6_29
Graham, K., Chow, L., Fai, S.: From BIM to VR: Defining a level of detail to guide virtual reality narratives. ITcon. 24, 553ā568 (2019). https://doi.org/10.36680/j.itcon.2019.031
Teizer, J., et al.: Digitalisierung der Arbeitssicherheit auf Baustellen. In: Bauer, W., Mütze-Niewƶhner, S., Stowasser, S., Zanker, C., Müller, N. (eds.) Arbeit in der digitalisierten Welt, pp. 399ā414. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-62215-5_26
Whelan, R.: Effective analysis of reaction time data. Psychol Rec. 58, 475ā482 (2008). https://doi.org/10.1007/BF03395630
Harald Baayen, R., Milin, P.: Analyzing reaction times. Int. J. Psych. Res. 3, 12 (2010). https://doi.org/10.21500/20112084.807
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Jelonek, M., Trost, L., Herrmann, T. (2022). A Vibrotactile Reaction Time Task to Measure Cognitive Performance in Virtual and Real Environments. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality: Design and Development. HCII 2022. Lecture Notes in Computer Science, vol 13317. Springer, Cham. https://doi.org/10.1007/978-3-031-05939-1_12
Download citation
DOI: https://doi.org/10.1007/978-3-031-05939-1_12
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-05938-4
Online ISBN: 978-3-031-05939-1
eBook Packages: Computer ScienceComputer Science (R0)