Skip to main content

A Vibrotactile Reaction Time Task to Measure Cognitive Performance in Virtual and Real Environments

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality: Design and Development (HCII 2022)

Abstract

Cognitive load is an important concept to understand people's cognitive processing performance of information. To assess cognitive load, several methods can be applied. For performance-based measure, Reaction times (RT) tasks can be used. Compared to physiological measures such as electroencephalography, RT tasks can be easily implemented and can be used as an alternative to subjective questionnaires, like NASA-TLX. In this paper we present two evaluation studies of a vibrotactile wearable for RT tasks. The first study evaluates its potential for Choice Reaction Time (CRT) tasks to compare real and virtual settings, the second study uses a simple Reaction Time (RT) task to evaluate cognitive effort on two different VR locomotion techniques while working on tasks in VR. The system is based on a vibrotactile wearable for the cues/stimuli and is suited for VR settings as well as real environments. We argue that such systems allow to compare cognitive performance between real and virtual tasks and discuss the limitation of the system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cooper, G.: Cognitive load theory as an aid for instructional design. AJET 6 (1990). https://doi.org/10.14742/ajet.2322

  2. Albers, M.J., Tracy, J.P.: Measuring cognitive load to test the usability of web sites 6 (2006)

    Google Scholar 

  3. Sweller, J.: Cognitive load during problem solving: Effects on learning. Cogn. Sci. 12, 257–285 (1988). https://doi.org/10.1207/s15516709cog1202_4

    Article  Google Scholar 

  4. Sweller, J.: Cognitive load theory, learning difficulty, and instructional design. Learn. Instr. 4, 295–312 (1994). https://doi.org/10.1016/0959-4752(94)90003-5

    Article  Google Scholar 

  5. Albus, P., Vogt, A., Seufert, T.: Signaling in virtual reality influences learning outcome and cognitive load. Comput. Educ. 166, 104154 (2021). https://doi.org/10.1016/j.compedu.2021.104154

    Article  Google Scholar 

  6. Armougum, A., Orriols, E., Gaston-Bellegarde, A., Marle, C.J.-L., Piolino, P.: Virtual reality: A new method to investigate cognitive load during navigation. J. Environ. Psychol. 65, 101338 (2019). https://doi.org/10.1016/j.jenvp.2019.101338

    Article  Google Scholar 

  7. Sweller, J.: Measuring cognitive load. Persp. Med. Educ. 7(1), 1–2 (2017). https://doi.org/10.1007/s40037-017-0395-4

    Article  Google Scholar 

  8. Chen, S.: The construct of cognitive load in interpreting and its measurement. Perspectives 25, 640–657 (2017). https://doi.org/10.1080/0907676X.2016.1278026

    Article  Google Scholar 

  9. Hart, S.G.: Nasa-Task Load Index (NASA-TLX); 20 years later. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting vol. 50, p. 5 (2006)

    Google Scholar 

  10. Kumar, N., Kumar, J.: Measurement of cognitive load in HCI systems using EEG power spectrum: An experimental study. Procedia Comput. Sci. 84, 70–78 (2016). https://doi.org/10.1016/j.procs.2016.04.068

    Article  Google Scholar 

  11. Antonenko, P., Paas, F., Grabner, R., van Gog, T.: Using electroencephalography to measure cognitive load. Educ. Psychol. Rev. 22, 425–438 (2010). https://doi.org/10.1007/s10648-010-9130-y

    Article  Google Scholar 

  12. Jensen, A.R.: Clocking the Mind: Mental Chronometry and Individual Differences. Elsevier (2006)

    Google Scholar 

  13. Schoor, C., Bannert, M., Brünken, R.: Role of dual task design when measuring cognitive load during multimedia learning. Educ. Tech. Res. Dev. 60, 753–768 (2012). https://doi.org/10.1007/s11423-012-9251-8

    Article  Google Scholar 

  14. Deary, I.J., Liewald, D., Nissan, J.: A free, easy-to-use, computer-based simple and four-choice reaction time programme: The Deary-Liewald reaction time task. Behav Res. 43, 258–268 (2011). https://doi.org/10.3758/s13428-010-0024-1

    Article  Google Scholar 

  15. Deary, I.J., Der, G.: Reaction time, age, and cognitive ability: Longitudinal findings from age 16 to 63 years in representative population samples. Aging Neuropsychol. Cogn. 12, 187–215 (2005). https://doi.org/10.1080/13825580590969235

    Article  Google Scholar 

  16. Edman, G., Schalling, D., Levander, S.E.: Impulsivity and speed and errors in a reaction time task: A contribution to the construct validity of the concept of impulsivity. Acta Physiol. (Oxf) 53, 1–8 (1983). https://doi.org/10.1016/0001-6918(83)90012-4

    Article  Google Scholar 

  17. Cinaz, B., Vogt, C., Arnrich, B., Trƶster, G.: A Wearable user interface for measuring reaction time. In: Keyson, D.V., et al. (eds.) AmI 2011. LNCS, vol. 7040, pp. 41–50. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-25167-2_5

    Chapter  Google Scholar 

  18. Cinaz, B., Vogt, C., Arnrich, B., Trƶster, G.: Implementation and evaluation of wearable reaction time tests. Perv. Mob. Comput. 8, 813–821 (2012). https://doi.org/10.1016/j.pmcj.2012.06.006

    Article  Google Scholar 

  19. Frommel, J., Sonntag, S., Weber, M.: Effects of controller-based locomotion on player experience in a virtual reality exploration game. In: Proceedings of the 12th International Conference on the Foundations of Digital Games, pp. 1–6. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3102071.3102082

  20. Slater, M., Usoh, M., Steed, A.: Taking steps: the influence of a walking technique on presence in virtual reality. ACM Trans. Comput.-Hum. Interact. 2, 201–219 (1995). https://doi.org/10.1145/210079.210084

  21. Auda, J., Pascher, M., Schneegass, S.: Around the (Virtual) World: Infinite walking in virtual reality using electrical muscle stimulation. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 431:1–431:8. ACM, New York (2019). https://doi.org/10.1145/3290605.3300661

  22. Nilsson, N.C., Serafin, S., Steinicke, F., Nordahl, R.: Natural walking in virtual reality: A review. Comput. Entertain. 16, 8:1–8:22 (2018). https://doi.org/10.1145/3180658

  23. Boletsis, C.: The new era of virtual reality locomotion: A systematic literature review of techniques and a proposed typology. Multimodal Technol. Interact. 1, 24 (2017). https://doi.org/10.3390/mti1040024

    Article  Google Scholar 

  24. Boletsis, C., Cedergren, J.E.: VR locomotion in the new era of virtual reality: An empirical comparison of prevalent techniques. Adv. Hum. Comput. Interact. 2019, 1–15 (2019). https://doi.org/10.1155/2019/7420781

    Article  Google Scholar 

  25. Juravle, G., Binsted, G., Spence, C.: Tactile suppression in goal-directed movement. Psychon. Bull. Rev. 24(4), 1060–1076 (2016). https://doi.org/10.3758/s13423-016-1203-6

    Article  Google Scholar 

  26. Hwang, S., Ryu, J.-H.: The haptic steering wheel: Vibro-tactile based navigation for the driving environment. In: 2010 8th IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops), pp. 660–665 (2010). https://doi.org/10.1109/PERCOMW.2010.5470517

  27. Suzuki, K., Jansson, H.: An analysis of driver’s steering behaviour during auditory or haptic warnings for the designing of lane departure warning system. JSAE Rev. 24, 65–70 (2003). https://doi.org/10.1016/S0389-4304(02)00247-3

    Article  Google Scholar 

  28. Ho, C., Reed, N., Spence, C.: Assessing the effectiveness of ā€œintuitiveā€ vibrotactile warning signals in preventing front-to-rear-end collisions in a driving simulator. Accid. Anal. Prev. 38, 988–996 (2006). https://doi.org/10.1016/j.aap.2006.04.002

    Article  Google Scholar 

  29. Erp, J.B.F.V., Veen, H.A.H.C.V., Jansen, C., Dobbins, T.: Waypoint navigation with a vibrotactile waist belt. ACM Trans. Appl. Percep. 2, 106–117 (2005). https://doi.org/10.1145/1060581.1060585

  30. Asseman, F., Bronstein, A.M., Gresty, M.A.: Guidance of visual direction by topographical vibrotactile cues on the torso. Exp Brain Res. 186, 283–292 (2008). https://doi.org/10.1007/s00221-007-1231-6

    Article  Google Scholar 

  31. Li, Y., Jeon, W.R., Nam, C.S.: Navigation by vibration: Effects of vibrotactile feedback on a navigation task. Int. J. Ind. Ergon. 46, 76–84 (2015). https://doi.org/10.1016/j.ergon.2014.12.008

    Article  Google Scholar 

  32. Meier, A., Matthies, D.J.C., Urban, B., Wettach, R.: Exploring vibrotactile feedback on the body and foot for the purpose of pedestrian navigation. In: Proceedings of the 2nd international Workshop on Sensor-based Activity Recognition and Interaction - WOAR ’2015. pp. 1–11. ACM Press, Rostock (2015). https://doi.org/10.1145/2790044.2790051

  33. Pielot, M., Poppinga, B., Heuten, W., Boll, S.: Tacticycle: supporting exploratory bicycle trips. In: Proceedings of the 14th International Conference on Human-Computer Interaction with Mobile Devices and Services - MobileHCI 2012. p. 369. ACM Press, San Francisco (2012). https://doi.org/10.1145/2371574.2371631

  34. Kiss, F., Boldt, R., Pfleging, B., Schneegass, S.: Navigation systems for motorcyclists: Exploring wearable tactile feedback for route guidance in the real world. In: Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, pp. 617:1–617:7. ACM, New York (2018). https://doi.org/10.1145/3173574.3174191

  35. Asif, A., Boll, S.: Where to turn my car? Comparison of a Tactile Display and a Conventional Car Navigation System under High Load Condition, p. 8 (2010)

    Google Scholar 

  36. Cobus, V., Heuten, W., Boll, S.: Multimodal head-mounted display for multimodal alarms in intensive care units. In: Proceedings of the 6th ACM International Symposium on Pervasive Displays, pp. 26:1–26:2. ACM, New York (2017). https://doi.org/10.1145/3078810.3084349

  37. Cobus, V., Boll, S., Heuten, W.: Requirements for a wearable alarm distribution system in intensive care units. Zukunft der Pflege, p. 5 (2018)

    Google Scholar 

  38. Mateevitsi, V., Haggadone, B., Leigh, J., Kunzer, B., Kenyon, R.V.: Sensing the environment through SpiderSense. In: Proceedings of the 4th Augmented Human International Conference, pp. 51–57. ACM (2013)

    Google Scholar 

  39. van Erp, J.B.F., Verschoor, M.H.: Cross-modal visual and vibrotactile tracking. Appl. Ergon. 35, 105–112 (2004). https://doi.org/10.1016/j.apergo.2003.12.004

    Article  Google Scholar 

  40. Jelonek, M., Herrmann, T.: Attentiveness for potential accidents at the construction site: Virtual reality test environment with tactile warnings for behavior tests in hazardous situations. In: Proceedings of Mensch und Computer 2019, pp. 649–653. Association for Computing Machinery, New York (2019). https://doi.org/10.1145/3340764.3344885

  41. Albert, L., Routh, C.: Designing impactful construction safety training interventions. Safety. 7, 42 (2021). https://doi.org/10.3390/safety7020042

    Article  Google Scholar 

  42. Abdelhamid, T.S., Everett, J.G.: Identifying root causes of construction accidents. J. Constr. Eng. Manag. 126, 52–60 (2000). https://doi.org/10.1061/(ASCE)0733-9364(2000)126:1(52)

    Article  Google Scholar 

  43. Hilfert, T., Kƶnig, M.: Low-cost virtual reality environment for engineering and construction. Visual. Eng. 4(1), 1–18 (2016). https://doi.org/10.1186/s40327-015-0031-5

    Article  Google Scholar 

  44. Gibb, A., Lingard, H., Behm, M., Cooke, T.: Construction accident causality: learning from different countries and differing consequences. Constr. Manag. Econ. 32, 446–459 (2014). https://doi.org/10.1080/01446193.2014.907498

    Article  Google Scholar 

  45. Sacks, R., Perlman, A., Barak, R.: Construction safety training using immersive virtual reality. Constr. Manag. Econ. 31, 1005–1017 (2013). https://doi.org/10.1080/01446193.2013.828844

    Article  Google Scholar 

  46. Fiala, E., Jelonek, M., Herrmann, T.: Using virtual reality simulations to encourage reflective learning in construction workers. In: Zaphiris, P., Ioannou, A. (eds.) HCII 2020. LNCS, vol. 12206, pp. 422–434. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50506-6_29

    Chapter  Google Scholar 

  47. Graham, K., Chow, L., Fai, S.: From BIM to VR: Defining a level of detail to guide virtual reality narratives. ITcon. 24, 553–568 (2019). https://doi.org/10.36680/j.itcon.2019.031

  48. Teizer, J., et al.: Digitalisierung der Arbeitssicherheit auf Baustellen. In: Bauer, W., Mütze-Niewƶhner, S., Stowasser, S., Zanker, C., Müller, N. (eds.) Arbeit in der digitalisierten Welt, pp. 399–414. Springer, Heidelberg (2021). https://doi.org/10.1007/978-3-662-62215-5_26

    Chapter  Google Scholar 

  49. Whelan, R.: Effective analysis of reaction time data. Psychol Rec. 58, 475–482 (2008). https://doi.org/10.1007/BF03395630

    Article  Google Scholar 

  50. Harald Baayen, R., Milin, P.: Analyzing reaction times. Int. J. Psych. Res. 3, 12 (2010). https://doi.org/10.21500/20112084.807

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Jelonek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jelonek, M., Trost, L., Herrmann, T. (2022). A Vibrotactile Reaction Time Task to Measure Cognitive Performance in Virtual and Real Environments. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality: Design and Development. HCII 2022. Lecture Notes in Computer Science, vol 13317. Springer, Cham. https://doi.org/10.1007/978-3-031-05939-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05939-1_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05938-4

  • Online ISBN: 978-3-031-05939-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics