Skip to main content

Objective Quantification of Circular Vection in Immersive Environments

  • Conference paper
  • First Online:
  • 1909 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13317))

Abstract

Human interaction in the computer environment requires conduciveness with minimal cybersickness. One such sickness is vection, where the subjects undergo illusory perception of self-motion in response to visual stimulus. The present research quantifies the perceptual parameter. An optokinetic drum (OKD) is used to induce circular vection on a virtual reality (VR), and the inertial measurement unit (IMU) in a head-mounted display (HMD) is used to track the head rotation about x, y, z axes. The study quantifies the vection in terms of the vection index (VI). The VI depends on the ratio of the angular velocity of HMD to the angular velocity of OKD. There is a significant difference from resting state to higher angular speeds in clockwise (CW) as well as anticlockwise (ACW) direction \((p<0.05)\). Also, the circular vection along the y-axis imparts the motion along the x and z axes. The magnitude of vection increases with speed in CW and ACW directions till the optimum speed of OKD. The vection is absent during very low and high speeds of OKD. Most participants experience the self-motion in an angular displacement range of 30–97\(^\circ /\)s in both CW and ACW directions. The vection in ACW compensates for the vection in CW direction about x, y and z axes.

Supported by organization IITM.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Aitken, J.: 2. On a new variety of ocular spectrum. Proc. Royal Soc. Edinburgh 10, 40–44 (1880)

    Article  Google Scholar 

  2. Allison, R.S., Zacher, J.E., Kirollos, R., Guterman, P.S., Palmisano, S.: Perception of smooth and perturbed vection in short-duration microgravity. Exp. Brain Res. 223(4), 479–487 (2012)

    Article  Google Scholar 

  3. Aoki, M., Thilo, K.V., Burchill, P., Golding, J.F., Gresty, M.A.: Autonomic response to real versus illusory motion (vection). Clin. Auton. Res. 10(1), 23–28 (2000)

    Article  Google Scholar 

  4. Aykent, B., Merienne, F., Guillet, C., Paillot, D., Kemeny, A.: Motion sickness evaluation and comparison for a static driving simulator and a dynamic driving simulator. Proc. Inst. Mech. Eng. Part D J. Autom. Eng. 228(7), 818–829 (2014)

    Article  MATH  Google Scholar 

  5. Barnett-Cowan, M., Harris, L.: Perception of simultaneity and temporal order of active and passive head movements paired with visual, auditory and tactile stimuli. In: 9th International Multisensory Research Forum (IMRF 2008), p. 168 (2008)

    Google Scholar 

  6. Berntson, G.G., et al.: Heart rate variability: origins, methods, and interpretive caveats. Psychophysiology 34(6), 623–648 (1997)

    Article  Google Scholar 

  7. Bles, W.: Stepping around circular vection and coriolis effects. In: Attention and Performance IX, pp. 47–61 (1981)

    Google Scholar 

  8. Brandt, T., Dichgans, J., Koenig, E.: Differential effects of central versus peripheral vision on egocentric and exocentric motion perception. Exp. Brain Res. 16(5), 476–491 (1973). https://doi.org/10.1007/BF00234474

    Article  Google Scholar 

  9. Chelen, W., Kabrisky, M., Rogers, S.: Spectral analysis of the electroencephalographic response to motion sickness. Aviat. Space Environ. Med. 64(1), 24–29 (1993)

    Google Scholar 

  10. Cheung, B., Hofer, K., Heskin, R., Smith, A.: Physiological and behavioral responses to an exposure of pitch illusion in the simulator. Aviat. Space Environ. Med. 75(8), 657–665 (2004)

    Google Scholar 

  11. Cheung, B., Howard, I., Nedzelski, J., Landolt, J.: Circularvection about earth-horizontal axes in bilateral labyrinthine-defective subjects. Acta oto-laryngologica 108(5–6), 336–344 (1989)

    Article  Google Scholar 

  12. Dennison, M.S., Wisti, A.Z., D’Zmura, M.: Use of physiological signals to predict cybersickness. Displays 44, 42–52 (2016)

    Article  Google Scholar 

  13. Deutschländer, A., Bense, S., Stephan, T., Schwaiger, M., Dieterich, M., Brandt, T.: Rollvection versus linearvection: comparison of brain activations in pet. Human Brain Mapp. 21(3), 143–153 (2004)

    Article  Google Scholar 

  14. Dichgans, J., Brandt, T.: Visual-vestibular interaction: effects on self-motion perception and postural control. In: Held, R., Leibowitz, H.W., Teuber, H.L. (eds.) Perception, pp. 755–804. Springer, Heidelberg (1978). https://doi.org/10.1007/978-3-642-46354-9_25

    Chapter  Google Scholar 

  15. Ebenholtz, S.M.: Motion sickness and oculomotor systems in virtual environments. Pres. Teleoper. Virtual Environ. 1(3), 302–305 (1992)

    Article  Google Scholar 

  16. Ebenholtz, S.M., Cohen, M.M., Linder, B.J.: The possible role of nystagmus in motion sickness: a hypothesis. Aviat. Space Environ. Med. 65(11), 1032–1035 (1994)

    Google Scholar 

  17. Ehrlich, J.A., Kolasinski, E.M.: A comparison of sickness symptoms between dropout and finishing participants in virtual environment studies. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 42, pp. 1466–1470. SAGE Publications, Los Angeles (1998)

    Google Scholar 

  18. Fauville, G., Queiroz, A., Woolsey, E.S., Kelly, J.W., Bailenson, J.N.: The effect of water immersion on vection in virtual reality. Sci. Rep. 11(1), 1–13 (2021)

    Article  Google Scholar 

  19. Fetter, M.: Vestibulo-ocular reflex. Neuro-Ophthalmol. 40, 35–51 (2007)

    Article  Google Scholar 

  20. Fischer, M., Kornmüller, A.: Optokinetisch ausgelöste bewegungswahrnehmungen und optokinetischer nystagmus [perception of motion based on the optokinetic sense and optokinetic nystagmus]. J. für Psychologie und Neurologie 41, 273–308 (1930)

    Google Scholar 

  21. Guo, C., So, R.: Effects of foveal retinal slip on visually induced motion sickness: a pilot study. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, vol. 56, pp. 2565–2569. SAGE Publications, Los Angeles (2012)

    Google Scholar 

  22. Himi, N., Koga, T., Nakamura, E., Kobashi, M., Yamane, M., Tsujioka, K.: Differences in autonomic responses between subjects with and without nausea while watching an irregularly oscillating video. Auton. Neurosci. 116(1–2), 46–53 (2004)

    Article  Google Scholar 

  23. Holmes, S.R., Griffin, M.J.: Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. J. Psychophysiol. 15(1), 35 (2001)

    Article  Google Scholar 

  24. Hu, S., Grant, W.F., Stern, R.M., Koch, K.L.: Motion sickness severity and physiological correlates during repeated exposures to a rotating optokinetic drum. Aviat. Space Environ. Med. 62, 308–314 (1991)

    Google Scholar 

  25. Jaekl, P., Jenkin, M., Harris, L.R.: Perceiving a stable world during active rotational and translational head movements. Exp. Brain Res. 163(3), 388–399 (2005)

    Article  Google Scholar 

  26. Jäger, M., Gruber, N., Müri, R., Mosimann, U.P., Nef, T.: Manipulations to reduce simulator-related transient adverse health effects during simulated driving. Med. Biol. Engi. Comput. 52(7), 601–610 (2014)

    Article  Google Scholar 

  27. Jarmasz, J., Hollands, J.G.: Confidence intervals in repeated-measures designs: the number of observations principle. Can. J. Exp. Psychol./Revue canadienne de psychologie expérimentale 63(2), 124 (2009)

    Article  Google Scholar 

  28. Ji, J.T., So, R.H., Cheung, R.T.: Isolating the effects of vection and optokinetic nystagmus on optokinetic rotation-induced motion sickness. Human Fact. 51(5), 739–751 (2009)

    Article  Google Scholar 

  29. Jongkees, L.: Physiologie und pathophysiologie des vestibularorganes. Archiv für klinische und experimentelle Ohren-, Nasen-und Kehlkopfheilkunde 194(1), 1–110 (1969)

    Article  Google Scholar 

  30. Kennedy, R.S., Stanney, K.M.: Postural instability induced by virtual reality exposure: development of a certification protocol. Int. J. Human-Comput. Interact. 8(1), 25–47 (1996)

    Article  Google Scholar 

  31. Keshavarz, B., Berti, S.: Integration of sensory information precedes the sensation of vection: a combined behavioral and event-related brain potential (erp) study. Behav. Brain Res. 259, 131–136 (2014)

    Article  Google Scholar 

  32. Keshavarz, B., Campos, J.L., Berti, S.: Vection lies in the brain of the beholder: EEG parameters as an objective measurement of vection. Front. Psychol. 6, 1581 (2015)

    Google Scholar 

  33. Keshavarz, B., Hettinger, L.J., Vena, D., Campos, J.L.: Combined effects of auditory and visual cues on the perception of vection. Exp. Brain Res. 232(3), 827–836 (2013). https://doi.org/10.1007/s00221-013-3793-9

    Article  Google Scholar 

  34. Kim, J., Palmisano, S.: Eccentric gaze dynamics enhance vection in depth. J. Vision 10(12), 7 (2010)

    Article  Google Scholar 

  35. Kim, Y.Y., Kim, H.J., Kim, E.N., Ko, H.D., Kim, H.T.: Characteristic changes in the physiological components of cybersickness. Psychophysiology 42(5), 616–625 (2005)

    Google Scholar 

  36. Kirollos, R., Allison, R.S., Palmisano, S.: Cortical correlates of the simulated viewpoint oscillation advantage for vection. Multisensory Res. 30(7–8), 739–761 (2017)

    Article  Google Scholar 

  37. Kirollos, R., Herdman, C.M.: Measuring circular vection speed in a virtual reality headset. Displays 69, 102049 (2021)

    Article  Google Scholar 

  38. Koohestani, A., et al.: A knowledge discovery in motion sickness: a comprehensive literature review. IEEE Access 7, 85755–85770 (2019)

    Google Scholar 

  39. Kothgassner, O.D.: Salivary cortisol and cardiovascular reactivity to a public speaking task in a virtual and real-life environment. Comput. Human Behav. 62, 124–135 (2016)

    Article  Google Scholar 

  40. LaViola Jr., J.J.: A discussion of cybersickness in virtual environments. ACM Sigchi Bull. 32(1), 47–56 (2000)

    Google Scholar 

  41. Melcher, G.A., Henn, V.: The latency of circular vection during different accelerations of the optokinetic stimulus. Percept. Psychophys. 30(6), 552–556 (1981)

    Article  Google Scholar 

  42. Nilsson, N.C., Nordahl, R., Sikström, E., Turchet, L., Serafin, S.: Haptically induced illusory self-motion and the influence of context of motion. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 349–360. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-31401-8_32

    Chapter  Google Scholar 

  43. Owens, D.A., Gu, J., McNally, R.D.: Perception of the speed of self-motion vs. object-motion: another example of two modes of vision? Conscious. Cogn. 64, 61–71 (2018)

    Article  Google Scholar 

  44. Palmisano, S., Allison, R.S., Schira, M.M., Barry, R.J.: Future challenges for vection research: definitions, functional significance, measures, and neural bases. Front. Psychol. 6, 193 (2015)

    Article  Google Scholar 

  45. Palmisano, S., Barry, R.J., De Blasio, F.M., Fogarty, J.S.: Identifying objective EEG based markers of linear vection in depth. Front. Psychol. 7, 1205 (2016)

    Article  Google Scholar 

  46. Palmisano, S., Burke, D., Allison, R.S.: Coherent perspective jitter induces visual illusions of self-motion. Perception 32(1), 97–110 (2003)

    Article  Google Scholar 

  47. Palmisano, S., Gillam, B.: Stimulus eccentricity and spatial frequency interact to determine circular vection. Perception 27(9), 1067–1077 (1998)

    Article  Google Scholar 

  48. Reason, J.T.: Motion sickness adaptation: a neural mismatch model. J. Royal Soc. Med. 71(11), 819–829 (1978)

    Article  Google Scholar 

  49. Reason, J.T., Brand, J.J.: Motion Sickness. Academic press, Cambridge (1975)

    Google Scholar 

  50. Rebenitsch, L., Owen, C.: Review on cybersickness in applications and visual displays. Virtual Reality 20(2), 101–125 (2016). https://doi.org/10.1007/s10055-016-0285-9

    Article  Google Scholar 

  51. Riccio, G.E., Stoffregen, T.A.: An ecological theory of motion sickness and postural instability. Ecol. Psychol. 3(3), 195–240 (1991)

    Article  Google Scholar 

  52. Riecke, B.E., Feuereissen, D., Rieser, J.J., McNamara, T.P.: Spatialized sound enhances biomechanically-induced self-motion illusion (vection). In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 2799–2802 (2011)

    Google Scholar 

  53. St George, R.J., Day, B.L., Fitzpatrick, R.C.: Adaptation of vestibular signals for self-motion perception. J. Physiol. 589(4), 843–853 (2011)

    Article  Google Scholar 

  54. Stephan, T.: Functional MRI of galvanic vestibular stimulation with alternating currents at different frequencies. Neuroimage 26(3), 721–732 (2005)

    Article  Google Scholar 

  55. Stern, R., Koch, K., Leibowitz, H., Lindblad, I., Shupert, C., Stewart, W.: Tachygastria and motion sickness. Aviat. Space Environ. Med. 56(11), 1074–1077 (1985)

    Google Scholar 

  56. Stern, R.M., Koch, K.L., Stewart, W.R., Lindblad, I.M.: Spectral analysis of tachygastria recorded during motion sickness. Gastroenterology 92(1), 92–97 (1987)

    Article  Google Scholar 

  57. Strychacz, C., Viirre, E., Wing, S.: The use of EEG to measure cerebral changes during computer-based motion-sickness-inducing tasks. In: Biomonitoring for Physiological and Cognitive Performance during Military Operations, vol. 5797, pp. 139–148. International Society for Optics and Photonics (2005)

    Google Scholar 

  58. Tokumaru, O., Kaida, K., Ashida, H., Yoneda, I., Tatsuno, J.: EEG topographical analysis of spatial disorientation. Aviat. Space Environ. Medicine 70(3 Pt 1), 256–263 (1999)

    Google Scholar 

  59. Wan, H., Hu, S., Wang, J.: Correlation of phasic and tonic skin-conductance responses with severity of motion sickness induced by viewing an optokinetic rotating drum. Percept. Motor Skills 97(3_suppl), 1051–1057 (2003)

    Google Scholar 

  60. Watson, G.: A synthesis of simulator sickness studies conducted in a high-fidelity driving simulator. In: Proceedings of Driving Simulation Conference, pp. 69–78 (2000)

    Google Scholar 

  61. Webb, N.A., Griffin, M.J.: Optokinetic stimuli: motion sickness, visual acuity and eye movements. Aviat. Space Environ. Med. 73(4), 351–358 (2002)

    Google Scholar 

  62. Wibirama, S., Hamamoto, K.: Investigation of visually induced motion sickness in dynamic 3d contents based on subjective judgment, heart rate variability, and depth gaze behavior. In: 2014 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4803–4806. IEEE (2014)

    Google Scholar 

  63. Wiest, G., Amorim, M.A., Mayer, D., Schick, S., Deecke, L., Lang, W.: Cortical responses to object-motion and visually-induced self-motion perception. Cogn. Brain Res. 12(1), 167–170 (2001)

    Article  Google Scholar 

  64. Wright, W., DiZio, P., Lackner, J.: Vertical linear self-motion perception during visual and inertial motion: more than weighted summation of sensory inputs. J. Vestib. Res. 15(4), 185–195 (2005)

    Article  Google Scholar 

  65. Wu, J.P.: EEG changes in man during motion sickness induced by parallel swing. Space Med. Med. Eng. 5(3), 200–205 (1992)

    Google Scholar 

  66. Yang, X., Wang, D., Hu, H., Yue, K.: P-31: visual fatigue assessment and modeling based on ECG and EOG caused by 2D and 3D displays. In: SID Symposium Digest of Technical Papers, vol. 47, pp. 1237–1240. Wiley Online Library (2016)

    Google Scholar 

  67. Yang, J., Guo, C., So, R., Cheung, R.: Effects of eye fixation on visually induced motion sickness: are they caused by changes in retinal slip velocity? In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting. vol. 55, pp. 1220–1224. SAGE Publications Sage CA, Los Angeles (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Debadutta Subudhi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Subudhi, D., Balaji, P., Muniyandi, M. (2022). Objective Quantification of Circular Vection in Immersive Environments. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality: Design and Development. HCII 2022. Lecture Notes in Computer Science, vol 13317. Springer, Cham. https://doi.org/10.1007/978-3-031-05939-1_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05939-1_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05938-4

  • Online ISBN: 978-3-031-05939-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics