Skip to main content

Method to Create a Metaverse Using Smartphone Data

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality: Design and Development (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13317))

Included in the following conference series:

Abstract

With the development of internet technology, several IT companies and users have become interested in virtual worlds, called metaverses. However, one of the main problems for a metaverse is the number of resources required to develop it. To reduce the burden of high computing power and other related resources, we propose a method that uses mobile phone functions and data to generate a personal virtual space as there is still a research gap in this area. In this study, we propose a method to intuitively generate a personal virtual space using smartphone data. We propose the development of a new type of metaverse application using the photo data saved on a smartphone. We hypothesized that using the new metaverse application induces more happiness and excitement than using the smartphone gallery application to view memorable photos. To evaluate the new metaverse application, we measured the emotional responses of users and compared the two applications. The results indicate that using the new metaverse application results in higher happiness and excitement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Dionisio, J.D.N., Burns, W.G., Gilbert, R.: 3D virtual worlds and the metaverse: current status and future possibilities. ACM Comput. Surveys (CSUR) 45(3), 1–38 (2013)

    Article  Google Scholar 

  2. The Verge: https://www.theverge.com/22588022/mark-zuckerberg-facebook-ceo-metaverse-interview, Accessed 25 Jan 2022

  3. Lintern, G.: Tutorial: Work Domain Analysis (2011)

    Google Scholar 

  4. Desmet, P., Overbeeke, K., Tax, X.: Designing products with added emotional value: development and application of an approach for research through design. Des. J. 4, 32–47 (2001)

    Google Scholar 

  5. Ning, H., Wang, H., Lin, Y., Wang, W., Dhelim, S., Farha, F., Daneshmand, M.: A Survey on Metaverse: the State-of-the-art, Technologies, Applications, and Challenges. arXiv preprint arXiv:2111.09673 (2021)

  6. Schlemmer, E.: Learning in Metaverses: Co-Existing in Real Virtuality: Co-Existing in Real Virtuality. IGI Global (2014)

    Google Scholar 

  7. Forbes: https://www.forbes.com/sites/forbesbusinessdevelopmentcouncil/2021/12/21/why-the-metaverse-is-marketings-next-big-thing/?sh=69ee079325f0, Accessed 25 Jan 2022

  8. Daft, R., Lengel, R.: Organizational information requirements, media richness, and structural design. Manage. Sci. 32(5), 554–571 (1986)

    Article  Google Scholar 

  9. Davis, A., Murphy, J.D., Owens, D., Khazanchi, D., Zigurs, I.: Avatars, people, and virtual worlds: foundations for research in metaverses. J. Assoc. Inf. Syst. 10(2), 90 (2009)

    Google Scholar 

  10. Park, D., Park, H., Song, S.: Designing the AI developing system through ecological interface design. In: Ahram, T., Falcão, C. (eds.) AHFE 2020. AISC, vol. 1217, pp. 83–96. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-51828-8_12

    Chapter  Google Scholar 

  11. Park, D., Park, H., Song, S.: A method for increasing user engagement with voice assistant system. In: Marcus, A., Rosenzweig, E. (eds.) HCII 2020. LNCS, vol. 12201, pp. 146–157. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-49760-6_10

    Chapter  Google Scholar 

  12. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Adv. Neural. Inf. Process. Syst. 25, 1097–1105 (2012)

    Google Scholar 

  13. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vision 115(3), 211–252 (2015)

    Article  MathSciNet  Google Scholar 

  14. Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Houlsby, N.: An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020)

  15. Karras, T., Laine, S., Aittala, M., Hellsten, J., Lehtinen, J., Aila, T.: Analyzing and improving the image quality of stylegan. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 8110–8119 (2020)

    Google Scholar 

  16. Zhou, B., Lapedriza, A., Khosla, A., Oliva, A., Torralba, A.: Places: a 10 million image database for scene recognition. IEEE Trans. Pattern Anal. Mach. Intell. 40(6), 1452–1464 (2017)

    Article  Google Scholar 

  17. Quattoni, A., Torralba, A.: Recognizing indoor scenes. In: 2009 IEEE Con-ference on Computer Vision and Pattern Recognition, IEEE, pp. 413–420 (2009)

    Google Scholar 

  18. Feichtenhofer, C., Pinz, A., Wildes, R.P.: Temporal residual networks for dynamic scene recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4728–4737 (2017)

    Google Scholar 

  19. Xiao, J., Hays, J., Ehinger, K.A., Oliva, A., Torralba, A.: Sun database: Large-scale scene recognition from abbey to zoo. In: 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, IEEE , pp. 3485–3492 (2010)

    Google Scholar 

  20. Zhou, B.: https://github.com/CSAILVision/places365, Accessed 25 Jan 2022

  21. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  22. Global Positioning Team: Global Positioning System (GPS) Standard Positioning Service (SPS) Performance Analysis Report. GPS Product Team, Washington, DC, USA (2014)

    Google Scholar 

  23. Google: https://developers.google.com/maps/documentation/places/web-service/overview, Accessed 25 Jan 2022

  24. Jolicoeur, P., Gluck, M.A., Kosslyn, S.M.: Pictures and names: making the connection. Cogn. Psychol. 16(2), 243–275 (1984)

    Article  Google Scholar 

  25. Lang, P.: The Cognitive Psychophysiology of Emotion: Fear and Anxiety (1985)

    Google Scholar 

  26. Park, D., Hwang, S., Ko, S., Lee, J., Lee, J.: Recording your stress, can it help to prevent job stress? In: Stephanidis, C. (ed.) HCI 2018. CCIS, vol. 851, pp. 429–435. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-92279-9_57

    Chapter  Google Scholar 

  27. Park, H., Lee, J., Bae, S., Park, D., Lee, Y.: A proposal for an affective design and user-friendly voice agent. In: International Conference on Human Systems Engineering and Design: Future Trends and Applications, Springer, Cham, pp. 249–255 (2018)

    Google Scholar 

  28. Park, D., Lee, C.: Method for viewing real-world scenes while recording video. Appl. Sci. 11(10), 4617 (2021)

    Article  Google Scholar 

  29. Morris, J.: Observations: SAM: the self-assessment manikin; an efficient cross-cultural measurement of emotional response. J. Advert. Res. 35, 63–68 (1995)

    Google Scholar 

  30. Parkkola, H., Saariluoma, P.: would ten participants be enough for design of new services?, Qual. Impact Qual. Res. 86 (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saemi Choi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Park, D., Kim, J.M., Jung, J., Choi, S. (2022). Method to Create a Metaverse Using Smartphone Data. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality: Design and Development. HCII 2022. Lecture Notes in Computer Science, vol 13317. Springer, Cham. https://doi.org/10.1007/978-3-031-05939-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05939-1_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05938-4

  • Online ISBN: 978-3-031-05939-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics