Skip to main content

Mental Health Treatments Using an Explainable Adaptive Clustering Model

  • Conference paper
  • First Online:
Advances in Knowledge Discovery and Data Mining (PAKDD 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13282))

Included in the following conference series:

  • 1852 Accesses

Abstract

In this paper, we propose a model to help psychologists identify the most important aspects of emotions in mentally ill people. As a first step, we created emotional lexicon embeddings using natural language processing, followed by deep clustering based on the attention mechanism. The generated representation is used to evaluate patient-written text from an emotional perspective. To increase the patient authored emotional lexicon, we apply synonymous semantic expansion. The EANDC method is used to classify latent semantic representations according to context. This is an explainable attention network based adaptive deep clustering approach. To increase the explainability of the learning, we used similarity metrics to select the instances that label the text to optimize the following selection using the curriculum-based optimization technique. Experimental results show that increasing the number of synonyms based on emotion lexicons improves accuracy without negatively affecting performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://www.who.int/campaigns/connecting-the-world-to-combat-coronavirus/healthyathome/healthyathome---mental-health.

  2. 2.

    https://www.who.int/classifications/icd/en/GRNBOOK.pdf.

  3. 3.

    https://www.uspreventiveservicestaskforce.org/Home/GetFileByID/218.

  4. 4.

    https://www.mturk.com/.

References

  1. Ahmed, U., Mukhiya, S.K., Srivastava, G., Lamo, Y., Lin, J.C.W.: Attention-based deep entropy active learning using lexical algorithm for mental health treatment. Front. Psychol. 12, 471 (2021)

    Article  Google Scholar 

  2. Charles, W.G.: Contextual correlates of meaning. Appl. Psycholinguist. 21(4), 505–524 (2000)

    Article  Google Scholar 

  3. Chen, E., Lerman, K., Ferrara, E.: Tracking social media discourse about the COVID-19 pandemic: development of a public coronavirus twitter data set. JMIR Public Health Surveill. 6(2), e19273 (2020)

    Google Scholar 

  4. Chen, X., Wu, S.Z., Hong, M.: Understanding gradient clipping in private SGD: a geometric perspective. Adv. Neural. Inf. Process. Syst. 33, 13773–13782 (2020)

    Google Scholar 

  5. Cho, K., et al.: Learning phrase representations using RNN encoder-decoder for statistical machine translation. In: Moschitti, A., Pang, B., Daelemans, W. (eds.) The Conference on Empirical Methods in Natural Language Processing, pp. 1724–1734 (2014)

    Google Scholar 

  6. Dinakar, K., Weinstein, E., Lieberman, H., Selman, R.: Stacked generalization learning to analyze teenage distress. In: Proceedings of the International AAAI Conference on Web and Social Media, pp. 1–8 (2014)

    Google Scholar 

  7. Ebadi, A., Xi, P., Tremblay, S., Spencer, B., Pall, R., Wong, A.: Understanding the temporal evolution of COVID-19 research through machine learning and natural language processing. CoRR abs/2007.11604 (2020)

    Google Scholar 

  8. Henry, S., Yetisgen, M., Uzuner, O.: Natural language processing in mental health research and practice. In: Tenenbaum, J.D., Ranallo, P.A. (eds.) Mental Health Informatics, pp. 317–353. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-70558-9_13

  9. James, S.L., et al.: Global, regional, and national incidence, prevalence, and years lived with disability for 354 diseases and injuries for 195 countries and territories, 1990–2017: a systematic analysis for the global burden of disease study 2017. Lancet 392(10159), 1789–1858 (2018)

    Google Scholar 

  10. Kulkarni, A., Hengle, A., Kulkarni, P., Marathe, M.: Cluster analysis of online mental health discourse using topic-infused deep contextualized representations. In: Proceedings of the 12th International Workshop on Health Text Mining and Information Analysis, pp. 83–93 (2021)

    Google Scholar 

  11. Le Glaz, A., Berrouiguet, S., et al.: Machine learning and natural language processing in mental health: systematic review. J. Med. Internet Res. 23(5), e15708 (2021)

    Google Scholar 

  12. Lin, H., et al.: User-level psychological stress detection from social media using deep neural network. In: Proceedings of the 22nd ACM International Conference on Multimedia, pp. 507–516 (2014)

    Google Scholar 

  13. Lu, J., Yang, J., Batra, D., Parikh, D.: Hierarchical question-image co-attention for visual question answering. In: Lee, D.D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.) Advances in Neural Information Processing Systems 29: Annual Conference on Neural Information Processing Systems, pp. 289–297 (2016)

    Google Scholar 

  14. Luong, T., Pham, H., Manning, C.D.: Effective approaches to attention-based neural machine translation. In: Màrquez, L., Callison-Burch, C., Su, J., Pighin, D., Marton, Y. (eds.) The Conference on Empirical Methods in Natural Language Processing, pp. 1412–1421 (2015)

    Google Scholar 

  15. Losada, D.E., Gamallo, P.: Evaluating and improving lexical resources for detecting signs of depression in text. Lang. Resour. Eval. 54(1), 1–24 (2018)

    Article  Google Scholar 

  16. Mazza, M.G., et al.: Anxiety and depression in COVID-19 survivors: role of inflammatory and clinical predictors. Brain Behav. Immun. 89, 594–600 (2020)

    Google Scholar 

  17. McDonnell, M., Owen, J.E., Bantum, E.O.: Identification of emotional expression with cancer survivors: validation of linguistic inquiry and word count. JMIR Form. Res. 4(10), e18246 (2020)

    Google Scholar 

  18. Mukhiya, S.K., Ahmed, U., Rabbi, F., Pun, K.I., Lamo, Y.: Adaptation of IDPT system based on patient-authored text data using NLP. In: International Symposium on Computer-Based Medical Systems (CBMS), pp. 226–232. IEEE (2020)

    Google Scholar 

  19. Mukhiya, S.K., Wake, J.D., Inal, Y., Pun, K.I., Lamo, Y.: Adaptive elements in internet-delivered psychological treatment systems: systematic review. J. Med. Internet Res. 22(11), e21066 (2020)

    Google Scholar 

  20. Neuraz, A., et al.: Natural language processing for rapid response to emergent diseases: case study of calcium channel blockers and hypertension in the covid-19 pandemic. J. Med. Internet Res. 22(8), e20773 (2020)

    Google Scholar 

  21. Pennington, J., Socher, R., Manning, C.D.: Glove: global vectors for word representation. In: The Conference on Empirical Methods in Natural Language Processing, pp. 1532–1543 (2014)

    Google Scholar 

  22. Xu, K., et al.: Show, attend and tell: neural image caption generation with visual attention. In: Bach, F.R., Blei, D.M. (eds.) The International Conference on Machine Learning. JMLR Workshop and Conference Proceedings, vol. 37, pp. 2048–2057 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jerry Chun-Wei Lin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ahmed, U., Lin, J.CW., Srivastava, G. (2022). Mental Health Treatments Using an Explainable Adaptive Clustering Model. In: Gama, J., Li, T., Yu, Y., Chen, E., Zheng, Y., Teng, F. (eds) Advances in Knowledge Discovery and Data Mining. PAKDD 2022. Lecture Notes in Computer Science(), vol 13282. Springer, Cham. https://doi.org/10.1007/978-3-031-05981-0_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-05981-0_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-05980-3

  • Online ISBN: 978-3-031-05981-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics