Skip to main content

An Extended Reality Simulator for Advanced Trauma Life Support Training

  • Conference paper
  • First Online:
Virtual, Augmented and Mixed Reality: Applications in Education, Aviation and Industry (HCII 2022)

Abstract

We describe the design and development of an Extended Reality Advanced Trauma Life Support (ATLS) simulator that incorporates several ATLS scenarios. ATLS is a training program developed by the American College of Surgeons for teaching medical practitioners a systematic approach to treating trauma patients. The ATLS simulator is based on case-level data, which helps create reusable medical training scenarios. The simulation consists of three components, namely, incident history, initial assessment and resuscitation, and a secondary survey. It provides several scenarios for medical practitioners to perform the tasks from the ATLS checklist and practice diagnosing patients. The simulator can also predict the requirement of an ICU room, ventilator and the length of stay for a given trauma patient based on the type and severity of their injury. With our ATLS simulator we aim to provide medical practitioners a comprehensive training module for practicing emergency trauma response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 69.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The cost of medical VR training. https://axonpark.com/the-cost-of-medical-vr-training/. Accessed 11 Nov 2021

  2. Trauma registry resources (2022). https://www.ptsf.org/trauma-registry/trauma-registry-resources. Accessed 11 Jan 2022

  3. Brooke, J., et al.: SUS–a quick and dirty usability scale. Usability Eval. Ind. 189(194), 4–7 (1996)

    Google Scholar 

  4. de Carvalho Fürst, R.V., Polimanti, A.C., Galego, S.J., Bicudo, M.C., Montagna, E., Corrêa, J.A.: Ultrasound-guided vascular access simulator for medical training: proposal of a simple, economic and effective model. World J. Surg. 41(3), 681–686 (2017)

    Article  Google Scholar 

  5. Cecil, J., Gupta, A., Pirela-Cruz, M.: An advanced simulator for orthopedic surgical training. Int. J. Comput. Assist. Radiol. Surg. 13(2), 305–319 (2017). https://doi.org/10.1007/s11548-017-1688-0

    Article  Google Scholar 

  6. Daghistani, T.A., Elshawi, R., Sakr, S., Ahmed, A.M., Al-Thwayee, A., Al-Mallah, M.H.: Predictors of in-hospital length of stay among cardiac patients: a machine learning approach. Int. J. Cardiol. 288, 140–147 (2019)

    Article  Google Scholar 

  7. Dasgupta, A., Manuel, M., Mansur, R.S., Nowak, N., Gračanin, D.: Towards real time object recognition for context awareness in mixed reality: a machine learning approach. In: 2020 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW), pp. 262–268 (2020). https://doi.org/10.1109/VRW50115.2020.00054

  8. De Ponti, R., Marazzato, J., Maresca, A.M., Rovera, F., Carcano, G., Ferrario, M.M.: Pre-graduation medical training including virtual reality during COVID-19 pandemic: a report on students’ perception. BMC Med. Educ. 20(1), 1–7 (2020)

    Article  Google Scholar 

  9. Farra, S.L., et al.: Comparative cost of virtual reality training and live exercises for training hospital workers for evacuation. Comput. Inform. Nurs. CIN 37(9), 446 (2019)

    Google Scholar 

  10. Farshid, M., Paschen, J., Eriksson, T., Kietzmann, J.: Go boldly!: explore augmented reality, virtual reality, and mixed reality for business. Bus. Horiz. 61(5), 657–663 (2018)

    Article  Google Scholar 

  11. Frantz, T., Jansen, B., Duerinck, J., Vandemeulebroucke, J.: Augmenting Microsoft’s HoloLens with Vuforia tracking for neuronavigation. Healthc. Technol. Lett. 5(5), 221–225 (2018)

    Article  Google Scholar 

  12. Gauthier, N., et al.: Does cardiac physical exam teaching using a cardiac simulator improve medical students’ diagnostic skills? Cureus 11(5) (2019)

    Google Scholar 

  13. Gilliland, M.: The Business Forecasting Deal: Exposing Myths, Eliminating Bad Practices, Providing Practical Solutions. Wiley, Hoboken (2010)

    Google Scholar 

  14. Gilpin, D., Nelson, P.: Revised trauma score: a triage tool in the accident and emergency department. Injury 22(1), 35–37 (1991)

    Article  Google Scholar 

  15. Handosa, M., Schulze, H., Gračanin, D., Tucker, M., Manuel, M.: Extending embodied interactions in mixed reality environments. In: Chen, J.Y.C., Fragomeni, G. (eds.) VAMR 2018. LNCS, vol. 10909, pp. 314–327. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91581-4_23

    Chapter  Google Scholar 

  16. Harrington, C.M., et al.: Development and evaluation of a trauma decision-making simulator in oculus virtual reality. Am. J. Surg. 215(1), 42–47 (2018)

    Article  Google Scholar 

  17. Hong, W.S., Haimovich, A.D., Taylor, R.A.: Predicting hospital admission at emergency department triage using machine learning. PLoS ONE 13(7), e0201016 (2018)

    Article  Google Scholar 

  18. Hosseinzadeh, A., Izadi, M., Verma, A., Precup, D., Buckeridge, D.: Assessing the predictability of hospital readmission using machine learning. In: Twenty-Fifth IAAI Conference (2013)

    Google Scholar 

  19. MeasuringU: Measuring usability with the system usability scale (SUS) (2011). https://measuringu.com/sus. Accessed 10 Jan 2022

  20. Microsoft: What is the mixed reality toolkit (2021). https://docs.microsoft.com/en-us/windows/mixed-reality/mrtk-unity/?view=mrtkunity-2021-05. Accessed 14 Jan 2022

  21. Patel, D., Hawkins, J., et al.: Developing virtual reality trauma training experiences using 360-degree video: tutorial. J. Med. Internet Res. 22(12), e22420 (2020)

    Article  Google Scholar 

  22. Reiners, D., Davahli, M.R., Karwowski, W., Cruz-Neira, C.: The combination of artificial intelligence and extended reality: a systematic review. Front. Virtual Reality 114 (2021)

    Google Scholar 

  23. Ricci, L.H., Ferraz, C.A.: Ophthalmoscopy simulation: advances in training and practice for medical students and young ophthalmologists. Adv. Med. Educ. Pract. 8, 435 (2017)

    Article  Google Scholar 

  24. Sheik-Ali, S., Edgcombe, H., Paton, C.: Next-generation virtual and augmented reality in surgical education: a narrative review. Surg. Technol. Int. 33 (2019)

    Google Scholar 

  25. Smith, K.A., High, K., Collins, S.P., Self, W.H.: A preprocedural checklist improves the safety of emergency department intubation of trauma patients. Acad. Emerg. Med. 22(8), 989–992 (2015)

    Article  Google Scholar 

  26. Stanney, K.M., et al.: Performance gains from adaptive extended reality training fueled by artificial intelligence. J. Def. Model. Simul. 15485129211064809 (2021)

    Google Scholar 

  27. Stevenson, M., Segui-Gomez, M., Lescohier, I., Di Scala, C., McDonald-Smith, G.: An overview of the injury severity score and the new injury severity score. Inj. Prev. 7(1), 10–13 (2001)

    Article  Google Scholar 

  28. Talbot, T.B., Sagae, K., John, B., Rizzo, A.A.: Sorting out the virtual patient: how to exploit artificial intelligence, game technology and sound educational practices to create engaging role-playing simulations. Int. J. Gaming Comput.-Mediated Simul. (IJGCMS) 4(3), 1–19 (2012)

    Article  Google Scholar 

  29. Taylor, R.A., et al.: Prediction of in-hospital mortality in emergency department patients with sepsis: a local big data-driven, machine learning approach. Acad. Emerg. Med. 23(3), 269–278 (2016)

    Article  Google Scholar 

  30. Van Maarseveen, O.E., Ham, W.H., Van de Ven, N.L., Saris, T.F., Leenen, L.P.: Effects of the application of a checklist during trauma resuscitations on ATLS adherence, team performance, and patient-related outcomes: a systematic review. Eur. J. Trauma Emerg. Surg. 46(1), 65–72 (2020)

    Article  Google Scholar 

  31. Wang, P., et al.: Comparison of severe trauma care effect before and after advanced trauma life support training. Chin. J. Traumatol. 13(6), 341–344 (2010). www.scopus.com

  32. Williams, M., Lockey, A., Culshaw, M.: Improved trauma management with advanced trauma life support (ATLS) training. J. Accid. Emerg. Med. 14(2), 81–83 (1997). https://doi.org/10.1136/emj.14.2.81. https://europepmc.org/articles/PMC1342874

  33. Zweifach, S.M., Triola, M.M.: Extended reality in medical education: driving adoption through provider-centered design. Digit. Biomark. 3(1), 14–21 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denis Gračanin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Donekal Chandrashekar, N., Manuel, M., Park, J., Greene, A., Safford, S., Gračanin, D. (2022). An Extended Reality Simulator for Advanced Trauma Life Support Training. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality: Applications in Education, Aviation and Industry. HCII 2022. Lecture Notes in Computer Science, vol 13318. Springer, Cham. https://doi.org/10.1007/978-3-031-06015-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06015-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06014-4

  • Online ISBN: 978-3-031-06015-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics