Abstract
Virtual Access to STEM Careers (VASC) is a technology-rich, inquiry and problem-based curriculum designed to expose and stimulate student interest in marine, environmental, computer, and geological sciences. Intended for 3rd through 5th grade students, VASC builds academic momentum at the intermediate level to prepare students for STEM opportunities later in middle school and high school. Our program is aligned with “Next Generation Science Standards” and “Common Core State Standards” and immerses students in rigorous, high-interest learning modules where students are introduced to and take on the roles of different STEM occupations. We are specifically developing and testing virtual reality-based modules that place students in a coastal environment where they learn about the sea turtle life-cycle. Students also practice the types of measurements and conservation tasks that park rangers and marine scientists regularly perform. The investigations focused on the design of a user interface that meets the needs of students and their teachers. We collected feedback on user interface design and knowledge gained by the users from the simulation. Additionally, we compared two different virtual reality head-mounted displays; i) HTC Vive and ii) Oculus Quest 2, to identify the pros and cons of each technology in future classroom settings. Our investigations yielded valuable information about how instructions should be presented to users, how the interface should provide immediate feedback for user error, how surveys should be administered, what equipment is most efficient for transporting and setting up large scale experiments in schools, and what types of interactions students and teachers want to experience in VASC.
Supported by NSF Award #1850430.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Belland, B.R., Ertmer, P.A., Simons, K.D.: Perceptions of the value of problem-based learning among students with special needs and their teachers. Interdiscipl. J. Probl. Based Learn. 1(2), 1 (2006)
Breiner, J.M., Harkness, S.S., Johnson, C.C., Koehler, C.M.: What is stem? A discussion about conceptions of stem in education and partnerships. School Sci. Math. 112(1), 3–11 (2012)
Brush, T., Saye, J.: The effects of multimedia-supported problem-based inquiry on student engagement, empathy, and assumptions about history. Interdiscipl. J. Probl. Based Learn. 2(1), 4 (2008)
Center, P.R.: Women and men in stem often at odds over workplace equity (2018)
Christou, C.: Virtual reality in education. In: Affective, interactive and cognitive methods for e-learning design: creating an optimal education experience, pp. 228–243. IGI Global (2010)
Cote, D.: Problem-based learning software for students with disabilities. Interv. School Clin. 43(1), 29–37 (2007)
Council, N.R., et al.: Next generation science standards: For states, by states (2013)
Daily, S.B., Leonard, A.E., Jörg, S., Babu, S., Gundersen, K., Parmar, D.: Embodying computational thinking: Initial design of an emerging technological learning tool. Technol. Knowl. Learn. 20(1), 79–84 (2015)
Dewey, J.: Democracy and education. Courier Corporation (2004)
Ertmer, P.A., Simons, K.D.: Jumping the PBL implementation hurdle: supporting the efforts of k-12 teachers. Interdiscipl. J. Probl. Based learn. 1(1), 5 (2006)
Foulger, T.S., Jimenez-Silva, M.: Enhancing the writing development of English language learners: Teacher perceptions of common technology in project-based learning. J. Res. Child. Educ. 22(2), 109–124 (2007)
Hernández-Ramos, P., Paz, S.D.L.: Learning history in middle school by designing multimedia in a project-based learning experience. J. Res. Technol. Educ. 42(2), 151–173 (2009)
Hew, K.F., Cheung, W.S.: Use of three-dimensional (3-D) immersive virtual worlds in k-12 and higher education settings: a review of the research. Br. J. Educ. Technol. 41(1), 33–55 (2010)
Hsieh, P., Cho, Y., Liu, M., Schallert, D.: Examining the interplay between middle school students’ achievement goals and self-efficacy in a technology-enhanced learning environment. Am. Second. Educ. 36(3), 33–50 (2008)
Initiative, C.C.S.S., et al.: Common core state standards for mathematics (2010). http://www.corestandards.org/assets/CCSSI_MathStandards.pdf
Javidi, G.: Virtual reality and education (1999)
Krajcik, J., Codere, S., Dahsah, C., Bayer, R., Mun, K.: Planning instruction to meet the intent of the next generation science standards. J. Sci. Teach. Educ. 25(2), 157–175 (2014)
LaForce, M., et al.: The eight essential elements of inclusive stem high schools. Int. J. STEM Educ. 3(1), 1–11 (2016)
de Marcos, L., Garcia-Lopez, E., Garcia-Cabot, A.: On the effectiveness of game-like and social approaches in learning: comparing educational gaming, gamification & social networking. Comput. Educ. 95, 99–113 (2016)
Merchant, Z., Goetz, E.T., Cifuentes, L., Keeney-Kennicutt, W., Davis, T.J.: Effectiveness of virtual reality-based instruction on students’ learning outcomes in k-12 and higher education: a meta-analysis. Comput. Educ. 70, 29–40 (2014)
Mergendoller, J.R., Maxwell, N.L., Bellisimo, Y.: The effectiveness of problem-based instruction: a comparative study of instructional methods and student characteristics. Interdiscipl. J. Probl. Based Learn. 1(2), 5 (2006)
Parmar, D., et al.: Programming moves: design and evaluation of applying embodied interaction in virtual environments to enhance computational thinking in middle school students. In: Virtual Reality (VR), 2016 IEEE, pp. 131–140. IEEE (2016)
Penuel, W.R.: Implementation and effects of one-to-one computing initiatives: a research synthesis. J. Res. Technol. Educ. 38(3), 329–348 (2006)
Peters-Burton, E.E., Lynch, S.J., Behrend, T.S., Means, B.B.: Inclusive stem high school design: 10 critical components. Theory Pract. 53(1), 64–71 (2014)
Potkonjak, V., et al.: Virtual laboratories for education in science, technology, and engineering: a review. Comput. Educ. 95, 309–327 (2016)
Putnam, R.T., Borko, H.: What do new views of knowledge and thinking have to say about research on teacher learning? Educ. Res. 29(1), 4–15 (2000)
Roussou, M.: Learning by doing and learning through play: an exploration of interactivity in virtual environments for children. Comput. Entertain. (CIE) 2(1), 10–10 (2004)
Roussou, M., Oliver, M., Slater, M.: The virtual playground: an educational virtual reality environment for evaluating interactivity and conceptual learning. Virtual Real. 10(3–4), 227–240 (2006)
Sias, C.M., Nadelson, L.S., Juth, S.M., Seifert, A.L.: The best laid plans: educational innovation in elementary teacher generated integrated stem lesson plans. J. Educ. Res. 110(3), 227–238 (2017)
Tamim, S.R., Grant, M.M.: Definitions and uses: case study of teachers implementing project-based learning. Interdiscipl. J. Probl. Based Learn. 7(2), 3 (2013)
Thomas, J.W., Mergendoller, J.R.: Managing project-based learning: Principles from the field. In: Annual Meeting of the American Educational Research Association, New Orleans (2000)
Trindade, J., Fiolhais, C., Almeida, L.: Science learning in virtual environments: a descriptive study. Br. J. Educ. Technol. 33(4), 471–488 (2002)
Acknowledgement
The project is supported by NSF Award #1850430. The authors would like to acknowledge the following students who have also contributed to the development and testing of VASC: Daniel Vaughn, Jacob Thomas, Lauren Rota, Kenneth McMillan, Patricia Beeksma, Grant Hitson, Alexandra Gonzales, Kayla Dorsey, Cameron Detig, Mogran Davis, Emily Crumpler, Bryson Harlee, Seth Angell, and Elijah Tripp.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Ebrahimi, E. et al. (2022). Virtual Access to STEM Careers: Two Preliminary Investigations. In: Chen, J.Y.C., Fragomeni, G. (eds) Virtual, Augmented and Mixed Reality: Applications in Education, Aviation and Industry. HCII 2022. Lecture Notes in Computer Science, vol 13318. Springer, Cham. https://doi.org/10.1007/978-3-031-06015-1_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-06015-1_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06014-4
Online ISBN: 978-3-031-06015-1
eBook Packages: Computer ScienceComputer Science (R0)