Skip to main content

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13320))

Included in the following conference series:

Abstract

The viability of multimodal fusion of linguistic and acoustic biomarkers in speech to help in identifying a person with probable Alzheimer’s dementia symptoms have been explored in this research. For capturing the effect of dementia on person’s language and verbal abilities, a novel way of disease detection was explored based on visual analysis of images of spectrogram extracted from patient’s interview recordings. We put forward three fusion methods, which allow the major advancements in representation learning to be utilized. The objective of the empirical study and ensuing discussion presented in this paper was threefold: 1) to examine the potential of state-of-the-art transformer-based architectures and transfer learning to assist the disease diagnosis, 2) to map the problem of acoustic analysis into the realm of image processing, by transforming spectrograms into images and employing pretrained deep neural networks, such as ResNet to extract visual patterns, and 3) to investigate the sound interplay of multi-modal biomarkers of Alzheimer’s dementia when fusing the learned representations in different modalities. We present the results of independent evaluations of the unimodal methods against which the fusion methods have been compared to.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://dementia.talkbank.org/, last visited: 10.02.2022.

References

  1. Akbik, A., Bergmann, T., Vollgraf, R.: Pooled contextualized embeddings for named entity recognition. In: NAACL 2019, 2019 Annual Conference of the North American Chapter of the Association for Computational Linguistics, pp. 724–728 (2019)

    Google Scholar 

  2. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embeddings for sequence labeling. In: COLING 2018, 27th International Conference on Computational Linguistics, pp. 1638–1649 (2018)

    Google Scholar 

  3. Alyahya, R.S., Halai, A.D., Conroy, P., Ralph, M.A.L.: Mapping psycholinguistic features to the neuropsychological and lesion profiles in aphasia. Cortex 124, 260–273 (2020)

    Article  Google Scholar 

  4. Baevski, A., Zhou, Y., Mohamed, A., Auli, M.: wav2vec 2.0: a framework for self-supervised learning of speech representations. Adv. Neural Inf. Process. Syst. 33, 12449–12460 (2020)

    Google Scholar 

  5. Becker, J.T., Boiler, F., Lopez, O.L., Saxton, J., McGonigle, K.L.: The natural history of Alzheimer’s disease: description of study cohort and accuracy of diagnosis. Arch. Neurol. 51(6), 585–594 (1994)

    Article  Google Scholar 

  6. Bucks, R.S., Singh, S., Cuerden, J.M., Wilcock, G.K.: Analysis of spontaneous, conversational speech in dementia of Alzheimer type: evaluation of an objective technique for analysing lexical performance. Aphasiology 14(1), 71–91 (2000)

    Article  Google Scholar 

  7. Clark, K., Luong, M., Le, Q.V., Manning, C.D.: ELECTRA: pre-training text encoders as discriminators rather than generators. CoRR abs/2003.10555 (2020). https://arxiv.org/abs/2003.10555

  8. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  9. Devlin, J., Chang, M., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. CoRR abs/1810.04805 (2018). http://arxiv.org/abs/1810.04805

  10. Eyben, F., Wöllmer, M., Schuller, B.: OpenSmile: the Munich versatile and fast open-source audio feature extractor. In: Proceedings of the 18th ACM International Conference on Multimedia, pp. 1459–1462 (2010)

    Google Scholar 

  11. Gauder, L., Pepino, L., Ferrer, L., Riera, P.: Alzheimer disease recognition using speech-based embeddings from pre-trained models. In: Proceedings of Interspeech 2021, pp. 3795–3799 (2021). https://doi.org/10.21437/Interspeech.2021-753

  12. Gievska, S., Koroveshovski, K.: The impact of affective verbal content on predicting personality impressions in YouTube videos. In: Proceedings of the 2014 ACM Multi Media on Workshop on Computational Personality Recognition, pp. 19–22 (2014)

    Google Scholar 

  13. Goedert, M., Spillantini, M.G.: A century of Alzheimer’s disease. Science 314(5800), 777–781 (2006)

    Article  Google Scholar 

  14. Goodglass, H., Kaplan, E., Weintraub, S.: BDAE: The Boston Diagnostic Aphasia Examination. Lippincott Williams & Wilkins, Philadelphia (2001)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  16. Howard, J., Gugger, S.: FastAI: a layered API for deep learning. Information 11(2), 108 (2020)

    Article  Google Scholar 

  17. Huang, S.C., Pareek, A., Zamanian, R., Banerjee, I., Lungren, M.P.: Multimodal fusion with deep neural networks for leveraging CT imaging and electronic health record: a case-study in pulmonary embolism detection. Sci. Rep. 10(1), 1–9 (2020)

    Article  Google Scholar 

  18. Iandola, F.N., Moskewicz, M.W., Ashraf, K., Han, S., Dally, W.J., Keutzer, K.: SqueezeNet: AlexNet-level accuracy with 50x fewer parameters and \(<\)1mb model size. CoRR abs/1602.07360 (2016). http://arxiv.org/abs/1602.07360

  19. Joulin, A., Grave, E., Mikolov, P.B.T.: Bag of tricks for efficient text classification (2016)

    Google Scholar 

  20. Khachaturian, Z.S.: Diagnosis of Alzheimer’s disease. Arch. Neurol. 42(11), 1097–1105 (1985)

    Article  Google Scholar 

  21. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Proceedings of the 31st International Conference on Neural Information Processing Systems, pp. 4768–4777 (2017)

    Google Scholar 

  22. Luz, S., Haider, F., de la Fuente, S., Fromm, D., MacWhinney, B.: Alzheimer’s dementia recognition through spontaneous speech: the adress challenge. arXiv preprint arXiv:2004.06833 (2020)

  23. Luz, S., Haider, F., de la Fuente, S., Fromm, D., MacWhinney, B.: Detecting cognitive decline using speech only: the ADReSSo challenge. In: Proceedings of Interspeech 2021, pp. 3780–3784 (2021). https://doi.org/10.21437/Interspeech.2021-1220

  24. Martinc, M., Pollak, S.: Tackling the ADReSS challenge: a multimodal approach to the automated recognition of Alzheimer’s dementia. In: INTERSPEECH, pp. 2157–2161 (2020)

    Google Scholar 

  25. McFee, B., et al.: Thassilo: librosa/librosa: 0.8.1rc2, May 2021. https://doi.org/10.5281/zenodo.4792298

  26. Mehrabian, A.: Pleasure-arousal-dominance: a general framework for describing and measuring individual differences in temperament. Curr. Psychol. 14(4), 261–292 (1996)

    Article  MathSciNet  Google Scholar 

  27. Mucke, L.: Alzheimer’s disease. Nature 461(7266), 895–897 (2009)

    Article  Google Scholar 

  28. Pan, Y., et al.: Using the outputs of different automatic speech recognition paradigms for acoustic-and BERT-based Alzheimer’s dementia detection through spontaneous speech. In: Proceedings of Interspeech, pp. 3810–3814 (2021)

    Google Scholar 

  29. Pennington, J., Socher, R., Manning, C.D.: GloVe: global vectors for word representation. In: Proceedings of the 2014 Conference on Empirical Methods in Natural Language Processing (EMNLP), pp. 1532–1543 (2014)

    Google Scholar 

  30. Poria, S., Cambria, E., Bajpai, R., Hussain, A.: A review of affective computing: from unimodal analysis to multimodal fusion. Inf. Fusion 37, 98–125 (2017)

    Article  Google Scholar 

  31. Poria, S., Cambria, E., Howard, N., Huang, G.B., Hussain, A.: Fusing audio, visual and textual clues for sentiment analysis from multimodal content. Neurocomputing 174, 50–59 (2016)

    Article  Google Scholar 

  32. Poria, S., Chaturvedi, I., Cambria, E., Hussain, A.: Convolutional MKL based multimodal emotion recognition and sentiment analysis. In: 2016 IEEE 16th International Conference on Data Mining (ICDM), pp. 439–448. IEEE (2016)

    Google Scholar 

  33. Pérez-Toro, P., et al.: Influence of the interviewer on the automatic assessment of Alzheimer’s disease in the context of the ADReSSo challenge. In: Proceedings of Interspeech 2021, pp. 3785–3789 (2021). https://doi.org/10.21437/Interspeech.2021-1589

  34. Reimers, N., Gurevych, I.: Sentence-BERT: sentence embeddings using Siamese BERT-networks. In: Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, November 2019. https://arxiv.org/abs/1908.10084

  35. Sarawgi, U., Zulfikar, W., Soliman, N., Maes, P.: Multimodal inductive transfer learning for detection of Alzheimer’s dementia and its severity. arXiv preprint arXiv:2009.00700 (2020)

  36. Shrestha, A., Serra, E., Spezzano, F.: Multi-modal social and psycho-linguistic embedding via recurrent neural networks to identify depressed users in online forums. Netw. Model. Anal. Health Inform. Bioinform. 9(1), 1–11 (2020). https://doi.org/10.1007/s13721-020-0226-0

    Article  Google Scholar 

  37. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. In: Bengio, Y., LeCun, Y. (eds.) 3rd International Conference on Learning Representations, ICLR 2015, San Diego, CA, USA, 7–9 May 2015, Conference Track Proceedings (2015). http://arxiv.org/abs/1409.1556

  38. Stark, B.C., et al.: Standardizing assessment of spoken discourse in aphasia: a working group with deliverables. Am. J. Speech Lang. Pathol. 30(1S), 491–502 (2021)

    Article  Google Scholar 

  39. Vina, J., Lloret, A.: Why women have more Alzheimer’s disease than men: gender and mitochondrial toxicity of amyloid-\(\beta \) peptide. J. Alzheimers Dis. 20(s2), S527–S533 (2010)

    Article  Google Scholar 

  40. Wang, N., Cao, Y., Hao, S., Shao, Z., Subbalakshmi, K.: Modular multi-modal attention network for Alzheimer’s disease detection using patient audio and language data. In: Proceedings of Interspeech 2021, pp. 3835–3839 (2021). https://doi.org/10.21437/Interspeech.2021-2024

  41. Wiley, J.: Alzheimer’s disease facts and figures. Alzheimers Dement. 17, 327–406 (2021)

    Google Scholar 

  42. Zhou, G., Wang, J., Zhang, X., Yu, G.: DeepGOA: predicting gene ontology annotations of proteins via graph convolutional network. In: 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 1836–1841. IEEE (2019)

    Google Scholar 

  43. Zhu, Y., Obyat, A., Liang, X., Batsis, J.A., Roth, R.M.: WavBERT: exploiting semantic and non-semantic speech using wav2vec and BERT for dementia detection. In: Proceedings of Interspeech 2021, pp. 3790–3794 (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina Toshevska .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Krstev, I., Pavikjevikj, M., Toshevska, M., Gievska, S. (2022). Multimodal Data Fusion for Automatic Detection of Alzheimer’s Disease. In: Duffy, V.G. (eds) Digital Human Modeling and Applications in Health, Safety, Ergonomics and Risk Management. Health, Operations Management, and Design. HCII 2022. Lecture Notes in Computer Science, vol 13320. Springer, Cham. https://doi.org/10.1007/978-3-031-06018-2_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06018-2_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06017-5

  • Online ISBN: 978-3-031-06018-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics