Abstract
Several human-centered remote control systems for cranes that track the operator’s position were developed and evaluated. Current HMI solutions are hard to master as they are not in accordance with the users’ mental models. A series of two empirical studies investigated the potential, first in an online questionnaire, and second using a crane operated by expert users as well as novices. Usability in terms of effectiveness, efficiency and satisfaction was the central dependent variable. Results show potential for the newly developed solutions, mainly in terms of satisfaction. Effectiveness and efficiency were on the same level with the newly developed systems as with the conventional control system. Despite no clear indication that performance in terms of effectiveness and efficiency increased, the advantages in applicability of the new control systems as well as participant preference suggest that further development of user-centered teleoperation controls is worthwhile. The results provide insight into human remote control operation, general perspectives toward human orientation changes, and a fundament for future development of teleoperation interfaces.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abdel-Rahman, E.M., Nayfeh, A.H., Masoud, Z.N.: Dynamics and control of cranes: a review. J. Vib. Control 9(7), 863–908 (2003). https://doi.org/10.1177/1077546303009007007
Bak, M.K., Hansen, M.R., Karimi, H.R.: Robust tool point control for offshore knuckle boom crane. In: Bittanti, S. (ed.) 18th IFAC World Congress. vol. 44, pp. 4594–4599. Curran, Red Hook (2011)
Bessiere, K., Newhagen, J.E., Robinson, J.P., Shneiderman, B.: A model for computer frustration: the role of instrumental and dispositional factors on incident, session, and post-session frustration and mood. Comput. Hum. Behav. 22(6), 941–961 (2006)
Blackler, A., Popovic, V., Mahar, D.: Investigating users’ intuitive interaction with complex artefacts. Appl. Ergon. 41(1), 72–92 (2010). https://doi.org/10.1016/j.apergo.2009.04.010, https://www.sciencedirect.com/science/article/abs/pii/S0003687009000593
Bock, T., Linner, T.: Robot oriented design. Cambridge University Press (2015)
Brooke, J.: SUS: a ‘quick and dirty’ usability scale. In: Jordan, P.W., Thomas, B., McClelland, I.L. (eds.) Usability Evaluation in Industry, pp. 4–7. Taylor & Francis, London (1996)
Bubb, H.: Systemergonomische Gestaltung. In: Schmidtke, H. (ed.) Ergonomie, pp. 390–419. Carl Hanser-Verlag, München and Wien (1993)
Campeau-Lecours, A., Foucault, S., Laliberté, T., Mayer-St-Onge, B., Gosselin, B.: A cable-suspended intelligent crane assist device for the intuitive manipulation of large payloads. IEEE/ASME Trans. Mechatron. 21(4), 2073–2084 (2016). https://doi.org/10.1109/TMECH.2016.2531626
Campeau-Lecours, A., et al.: Kinova modular robot arms for service robotics applications. In: Rapid Automation: Concepts, Methodologies, Tools, and Applications, pp. 693–719. IGI Global (2019)
Colgate, J.E., Peshkin, M., Klostermeyer, S.: Intelligent assist devices in industrial applications: a review. In: IEEE Institute of Electrical and Electronics Engineers (ed.) 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 2516–2521. IEEE, Piscataway (2003)
Deutsches Institut für Normung e.V.: Cranes - controls and control stations. DIN EN 13557, Berlin (2009)
Deutsches Institut für Normung e.V.: Cranes - loader cranes. DIN EN 12999, Berlin (2013)
Deutsches Institut für Normung e.V.: Ergonomics of human-system interaction - Part 11: Usability: Definitions and concepts. Standard, International Organization for Standardization, Geneva (2018)
Fitts, P.M., Seeger, C.M.: S-R compatibility: spatial characteristics of stimulus and response codes. J. Exp. Psychol. 46(3), 199–210 (1953)
Fodor, S., Vázquez, C., Freidovich, L.: Interactive on-line trajectories for semi-automation: case study of a forwarder crane. In: IEEE Institute of Electrical and Electronics Engineers (ed.) 2016 IEEE International Conference on Automation Science and Engineering (CASE), pp. 928–933. IEEE, Piscataway (2016)
Garner, W.R., Felfoldy, G.L.: Integrality of stimulus dimensions in various types of information processing. Cogn. Psychol. 1(3), 225–241 (1970)
Gosselin, C., et al.: A friendly beast of burden: a human-assistive robot for handling large payloads. IEEE Rob. Autom. Mag. 20(4), 139–147 (2013)
Herbst, U.: Gestaltung eines ergonomischen Interaktionskonzeptes für flexibel einsetzbare und transportable Roboterzellen. Dissertation, Technische Universität München (2015)
Herbst, U., Rühl, S., Hermann, A., Xue, Z., Bengler, K.: Ergonomic 6D interaction technologies for a flexible and transportable robot system: a comparison. IFAC Proc. Volumes 46(15), 58–63 (2013)
HIAB: Ctc - crane tip control (2018), https://www.hiab.com/en/company/newsroom/news/hiab-crane-tip-control/
John Deere: Intelligente Kransteuerung ibc (2013), https://www.deere.de/de/forstmaschinen/ibc/
Johnson-Laird, P.N.: Mental models, deductive reasoning, and the brain. Cogn. Neurosci. 65, 999–1008 (1995)
Johnson-Laird, P.N.: Mental models: towards a cognitive science of language, inference, and consciousness. No. 6, Harvard University Press (1983)
Kazerooni, H., Fairbanks, D., Chen, A., Shin, G.: The magic glove. In: IEEE Institute of Electrical and Electronics Engineers (ed.) 2004 IEEE International Conference on Robotics and Automation, pp. 757–763. IEEE, Piscataway (2004)
King, R.A.: Analysis of Crane and Lifting Accidents in North America from 2004 to 2010. Masterarbeit, Massachusetts Institute of Technology, Cambridge (2012). https://dspace.mit.edu/handle/1721.1/73792
Kivila, A., Porter, C., Singhose, W.: Human operator studies of portable touchscreen crane control interfaces. In: IEEE Institute of Electrical and Electronics Engineers (ed.) IEEE International Conference on Industrial Technology (ICIT), pp. 88–93. IEEE, Piscataway (2013). https://doi.org/10.1109/ICIT.2013.6505653
Kivila, A., Singhose, W.: The effect of operator orientation in crane control. In: Berg, J.M. (ed.) Proceedings of the ASME 7th Annual Dynamic Systems and Control Conference, pp. 1–7. ASME, NY (2014)
Löfgren, B.: Kinematic control of redundant knuckle booms with automatic path-following functions. Dissertation, Royal Institute of Technology, Stockholm (2009)
Majewski, M., Kacalak, W.: Innovative intelligent interaction systems of loader cranes and their human operators. In: Silhavy, R., Senkerik, R., Kominkova Oplatkova, Z., Prokopova, Z., Silhavy, P. (eds.) Artificial Intelligence Trends in Intelligent Systems, vol. 573, pp. 474–485. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57261-1_47
Manner, J., Mörk, A., Englund, M.: Comparing forwarder boom-control systems based on an automatically recorded follow-up dataset. Silva Fennica 53(2) (2019). https://doi.org/10.14214/sf.10161
Manner, J., Gelin, O., Mörk, A., Englund, M.: Forwarder crane’s boom tip control system and beginner-level operators. Silva Fennica 51(2), 1717 (2017)
Miadlicki, K., Pajor, M.: Overview of user interfaces used in load lifting devices. Int. J. Sci. Eng. Res. 6(9), 1215–1220 (2015)
Navon, D., Gopher, D.: On the economy of the human-processing system. Psychol. Rev. 86(3), 214 (1979)
Nielsen, J.: Let’s ask the users [user interfaces]. IEEE Softw. 14(3), 110–111 (1997)
Norman, D.A.: Some observations on mental models. In: Mental Models, pp. 15–22. Psychology Press (2014)
Peng, K.: Methods for improving crane performance and ease of use. Dissertation, Georgia Institute of Technology, Atlanta (2013)
Peng, K., Singhose, W.: Crane control using machine vision and wand following. In: IEEE Institute of Electrical and Electronics Engineers (ed.) IEEE International Conference on Mechatronics. IEEE, Piscataway (2009). http://ieeexplore.ieee.org/servlet/opac?punumber=4914928
Peng, K., Singhose, W., Gessesse, S., Frakes, D.: Crane operation using hand-motion and rfid tags: radio frequency identification. In: IEEE Institute of Electrical and Electronics Engineers (ed.) IEEE International Conference on Control and Automation, pp. 1110–1115. IEEE, Piscataway (2009)
Peng, K., Singhose, W., Frakes, D.H.: Hand-motion crane control using radio-frequency real-time location systems. IEEE/ASME Trans. Mechatron. 17(3), 464–471 (2012). https://doi.org/10.1109/TMECH.2012.2184768
Schmidtler, J.A.: Optimizing haptic human-robot collaboration considering human perception and idiosyncrasies. Dissertation, Technische Universität München (2018)
Seidl, A., Trieb, R., Wirsching, H.J.: Sizegermany-the new german anthropometric survey conceptual design, implementation and results. In: Proceedings of 17th World Congress on Ergonomics, Beijing (2009)
Shapiro, L.K., Shapiro, J.P.: Cranes and Derricks. 4 edn., McGraw-Hill, NY (2011)
Sorensen, K., Spiers, J., Singhose, W.: Operational effects of crane interface devices. In: IEEE Institute of Electrical and Electronics Engineers (ed.) 2nd IEEE Conference on Industrial Electronics and Applications, pp. 1073–1078. IEEE Operations Center, Piscataway (2007). https://doi.org/10.1109/ICIEA.2007.4318573
Suter, J., Kim, D., Singhose, W., Sorensen, K., Glauser, U.: Evaluation and integration of a wireless touchscreen into a bridge crane control system. In: IEEE Institute of Electrical and Electronics Engineers (ed.) IEEE/ASME International Conference on Advanced Intelligent Mechatronics, pp. 1–6. IEEE Service Center, Piscataway (2007). https://doi.org/10.1109/AIM.2007.4412586
Tomakov, I., Tomakov, V., Pahomova, G., Semicheva, E., Bredihina, V.: A study on the causes and consequences of accidents with cranes for lifting and moving loads in industrial plants and construction sites of the russian federation. J. Appl. Eng. Sci. 16(1), 95–98 (2018). https://doi.org/10.5937/jaes16-16478
Top, F., Krottenthaler, J., Fottner, J.: Evaluation of remote crane operation with an intuitive tablet interface and boom tip control. In: IEEE Institute of Electrical and Electronics Engineers (ed.) IEEE International Conference on Systems, Man and Cybernetics (SMC). Conference Proceedings, pp. 3275–3282. IEEE, Piscataway (2020)
Top, F., Pütz, S., Fottner, J.: Human-centered HMI for crane teleoperation: empirical study on the operators’ mental workload. In: Proceedings of the IEEE International Conference on Electrical, Computer, Communications and Mechatronics Engineering, pp. 01–13 (2021)
Top, F., Pütz, S., Fottner, J.: Human-centered HMI for crane teleoperation: intuitive concepts based on mental models, compatibility and mental workload. In: Harris, D., Li, WC. (eds) Engineering Psychology and Cognitive Ergonomics. HCII 2021. LNCS, vol. 12767, pp. 438–456. Springer, Cham
Top, F., Wagner, M., Fottner, J.: How to increase crane control usability: an intuitive HMI for remotely operated cranes in industry and construction. In: Karwowski, W., Ahram, T. (eds.) Intelligent Human Systems Integration, pp. 293–299. Advances in Intelligent Systems and Computing, Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11051-2_45
Wickens, C.D.: Multiple resources and mental workload. Hum. Factors 50(3), 449–455 (2008)
Worringham, C.J., Beringer, D.B.: Operator orientation and compatibility in visual-motor task performance. Ergonomics 32(4), 387–399 (1989)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Prasch, L., Top, F., Schmidtler, J., Bengler, K., Fottner, J. (2022). User-Centered Interface Design and Evaluation for Teleoperated Cranes with Boom Tip Control. In: Harris, D., Li, WC. (eds) Engineering Psychology and Cognitive Ergonomics. HCII 2022. Lecture Notes in Computer Science(), vol 13307. Springer, Cham. https://doi.org/10.1007/978-3-031-06086-1_15
Download citation
DOI: https://doi.org/10.1007/978-3-031-06086-1_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06085-4
Online ISBN: 978-3-031-06086-1
eBook Packages: Computer ScienceComputer Science (R0)