Skip to main content

Swiping Angles Differentially Influence Young and Old Users’ Performance and Experience on Swiping Gestures

  • Conference paper
  • First Online:
Engineering Psychology and Cognitive Ergonomics (HCII 2022)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 13307))

Included in the following conference series:

  • 1416 Accesses

Abstract

The efficiency and convenience of gesture shortcuts have an important influence on user experience. However, it is unknown how the number of permitted swiping angles and their allowable range affect users’ performance and experience. In the present study, young and old users executed swiping in multiple directions on smartphones. Results showed that multiple allowable angles resulted in slower swiping speed and poorer user experience than the single allowable angle condition. However, as the number of allowable angles increased, only old users showed a significant decrease in swiping accuracy. Vertical-up and upper-right swiping were faster than swiping in the horizontal directions. Furthermore, narrower operable range of swiping only reduced swiping accuracy in the tilted direction. Though old users performed worse on swiping than younger users, their subjective ratings were more positive than younger users’. Suggestions on how to design swiping gestures on the human-mobile interface were discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. 55+ App Usage Statistics and Trends for 2021 [Infographic]. https://techjury.net/blog/app-usage-statistics/. Accessed 11 Feb 2022

  2. Burnett, G., Crundall, E., Large, D., Lawson, G., Skrypchuk, L.: A study of unidirectional swipe gestures on in-vehicle touch screens. In: Proceedings of the 5th International Conference on Automotive User Interfaces and Interactive Vehicular Applications - AutomotiveUI 2013, pp. 22–29 (2013)

    Google Scholar 

  3. Huang, J.H., et al.: Differences in muscle activity, kinematics, user performance, and subjective assessment between touchscreen and mid-air interactions on a tablet. Behav. Inf. Technol. (2021)

    Google Scholar 

  4. Warr, A., Chi, E.H.: Swipe vs. scroll: web page switching on mobile browsers. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, Paris, pp. 2171–2174. Association for Computing Machinery (2013)

    Google Scholar 

  5. Zotz, N., Saft, S., Rosenlöhner, J., Böhm, P., Isemann, D.: Identification of age-specific usability problems of smartwatches. In: Miesenberger, K., Kouroupetroglou, G. (eds.) ICCHP 2018. LNCS, vol. 10897, pp. 399–406. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94274-2_57

    Chapter  Google Scholar 

  6. López, B.R., Benito, L.J., Llamas, V.S., Del Castillo, M.D., Serrano, J.I., Rocon, E.: Interaction with touchscreen smartphones in patients with essential tremor and healthy individuals. Neurologia 36(9), 657–665 (2018)

    Article  Google Scholar 

  7. Poppinga, B., Sahami Shirazi, A., Henze, N., Heuten, W., Boll, S.: Understanding shortcut gestures on mobile touch devices. In: Proceedings of the 16th International Conference on Human-Computer Interaction with Mobile Devices & Services (2021)

    Google Scholar 

  8. Zhang, C., Jiang, N., Feng, T.: Accessing mobile apps with user defined gesture shortcuts: an exploratory study. In: Proceedings of the 2016 ACM International Conference on Interactive Surfaces and Spaces, Niagara, pp. 385–390 (2016)

    Google Scholar 

  9. Aziz, N., Batmaz, F., Stone, R., Chung, P.: Selection of touch gestures for children’s applications. In: 2013 Science and Information Conference, London, pp. 721–726 (2013)

    Google Scholar 

  10. Leitão, R., Silva, P.: A study of novice older adults and gestural interaction on smartphones. In: CHI 2013 Mobile Accessibility Workshop, Paris (2013)

    Google Scholar 

  11. McDowd, J.M., Craik, F.I.: Effects of aging and task difficulty on divided attention performance. J. Exp. Psychol. Hum. Percept. Perform. 14(2), 267–280 (1988)

    Article  Google Scholar 

  12. Gao, Q., Sun, Q.: Examining the usability of touch screen gestures for older and younger adults. Hum. Factors 57(5), 835–863 (2015)

    Article  Google Scholar 

  13. Hsieh, M.H., Ho, C.H., Lee, I.C.: Effects of smartphone numeric keypad designs on performance and satisfaction of elderly users. Int. J. Ind. Ergon. 87 (2022)

    Google Scholar 

  14. Zanesco, A.P., Witkin, J.E., Morrison, A.B., Denkova, E., Jha, A.P.: Memory load, distracter interference, and dynamic adjustments in cognitive control influence working memory performance across the lifespan. Psychol Aging 5(5), 614–626 (2020)

    Article  Google Scholar 

  15. Coppola, S.M., Lin, M., Schilkowsky, J., Arezes, P.M., Dennerlein, J.T.: Tablet form factors and swipe gesture designs affect thumb biomechanics and performance during two-handed use. Appl. Ergon. 69, 40–46 (2018)

    Article  Google Scholar 

  16. Giassi, B.H., Seabra, R.D.: Influence of age on the usability assessment of the Instagram application. In: Latifi, S. (ed.) Information Technology–New Generations (ITNG 2020). AISC, vol. 1134, pp. 423–428. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-43020-7_56

    Chapter  Google Scholar 

  17. Sonderegger, A., Schmutz, S., Sauer, J.: The influence of age in usability testing. Appl. Ergon. 52, 291–300 (2016)

    Article  Google Scholar 

Download references

Acknowledgment

This study was supported by a research grant from Huawei Corporation. J. J. and Z. W. contribute equally to this study.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Bingxin Li or Feng Du .

Editor information

Editors and Affiliations

Appendices

Appendix A. Mean Values (Standard Error) of the Reaction Time (ms)

Exp level

Specific angle

Younger

Older

Average

1–45

a1

399(60)

606(47)

502(41)

a2

387(54)

645(37)

516(38)

h1

400(36)

753(84)

576(53)

h2

358(40)

745(69)

552(50)

v

389(57)

656(72)

523(50)

Average

386(49)

681(64)

534(47)

5–45

a1

381(30)

585(32)

483(27)

a2

398(32)

663(39)

531(33)

h1

410(30)

804(130)

607(73)

h2

361(19)

631(47)

496(33)

v

339(24)

584(34)

461(28)

Average

378(28)

653(69)

515(43)

1–90

a1

334(27)

663(78)

498(48)

a2

375(41)

654(53)

515(40)

h1

420(37)

768(89)

594(55)

h2

360(55)

709(55)

534(43)

v

347(35)

731(77)

539(52)

Average

367(35)

705(71)

536(48)

Appendix B. Mean Values (Standard Error) of the Accuracy (%)

Exp level

Specific angle

Younger

Older

Average

1–45

a1

99(0.46)

98.75(0.71)

98.88(0.42)

a2

99.75(0.25)

98.25(0.83)

99(0.45)

h1

99.75(0.25)

99.75(0.25)

99.75(0.17)

h2

99.5(0.34)

99.5(0.34)

99.5(0.24)

v

100(0)

99.88(0.13)

99.94(0.06)

Average

99.6(0.3)

99.23(0.54)

99.41(0.31)

5–45

a1

97.75(0.77)

91.5(2.84)

94.63(1.53)

a2

98(1.05)

94.5(1.02)

96.25(0.77)

h1

99(0.46)

94(1.65)

96.5(0.93)

h2

97.5(0.57)

94.75(1.6)

96.13(0.87)

v

99.38(0.44)

98.63(0.64)

99(0.39)

Average

98.33(0.7)

94.68(1.76)

96.5(0.99)

1–90

a1

100(0)

100(0)

100(0)

a2

100(0)

100(0)

100(0)

h1

100(0)

99(0.46)

99.5(0.24)

h2

100(0)

99.5(0.34)

99.75(0.17)

v

100(0)

99.75(0.17)

99.88(0.09)

Average

100(0)

99.65(0.28)

99.83(0.14)

Appendix C. Mean Values (Standard Error) of the Speed (px/ms)

Exp level

Specific angle

Young

Old

Average

1–45

a1

1.84(0.17)

1.35(0.14)

1.6(0.12)

a2

2.56(0.22)

1.85(0.23)

2.21(0.17)

h1

1.37(0.12)

1.2(0.13)

1.28(0.09)

h2

1.72(0.14)

1.23(0.16)

1.48(0.11)

v

2.7(0.25)

1.77(0.19)

2.24(0.17)

Average

2.04(0.22)

1.48(0.18)

1.76(0.15)

5–45

a1

1.71(0.12)

1.25(0.14)

1.48(0.1)

a2

2.23(0.16)

1.62(0.23)

1.93(0.15)

h1

1.35(0.1)

1.05(0.12)

1.2(0.08)

h2

1.56(0.11)

1.15(0.16)

1.36(0.1)

v

2.41(0.18)

1.6(0.2)

2(0.15)

Average

1.85(0.16)

1.33(0.18)

1.59(0.13)

1–90

a1

1.91(0.18)

1.33(0.12)

1.62(0.12)

a2

2.48(0.23)

1.78(0.22)

2.13(0.17)

h1

1.44(0.11)

1.05(0.09)

1.24(0.08)

h2

1.81(0.14)

1.19(0.16)

1.5(0.11)

v

2.86(0.26)

1.8(0.21)

2.33(0.19)

Average

2.1(0.22)

1.43(0.18)

1.76(0.15)

Appendix D. Mean Values (Standard Error) of the Subjective Ratings

Scores

Exp level

Young

Old

Average

learn

1–45

24.85(0.74)

25(0.54)

24.925(0.45)

5–45

23.65(0.85)

23.65(1.12)

23.65(0.69)

1–90

25.55(0.64)

24.65(0.7)

25.1(0.47)

operation

1–45

26.55(1.2)

31.15(0.64)

28.85(0.77)

5–45

24.85(1.43)

29.15(1.04)

27(0.94)

1–90

30.3(0.92)

31.1(0.71)

30.7(0.58)

safe

1–45

10.55(0.63)

12(0.43)

11.275(0.39)

5–45

9.35(0.7)

11.6(0.59)

10.475(0.49)

1–90

11.6(0.62)

12.8(0.3)

12.2(0.35)

general

1–45

15.45(0.92)

16.45(0.82)

15.95(0.62)

5–45

13.9(0.96)

15.2(0.95)

14.55(0.67)

1–90

17.75(0.74)

17.05(0.75)

17.4(0.52)

likelihood

1–45

6.75(0.54)

8.8(0.23)

7.775(0.33)

5–45

6.35(0.6)

7.95(0.53)

7.15(0.42)

1–90

7.65(0.52)

9.05(0.23)

8.35(0.3)

recommend

1–45

6.4(0.53)

8.65(0.28)

7.525(0.35)

5–45

5.85(0.6)

7.8(0.56)

6.825(0.43)

1–90

7.65(0.52)

8.7(0.36)

8.175(0.32)

satisfactory

1–45

6.6(0.54)

9.25(0.22)

7.925(0.36)

5–45

6.25(0.51)

8.5(0.48)

7.375(0.39)

1–90

7.55(0.46)

9.35(0.2)

8.45(0.28)

diff_positive

1–45

−0.25(0.37)

−0.95(0.64)

−0.6(0.37)

5–45

−1.05(0.44)

−1.4(0.43)

−1.225(0.3)

1–90

−0.25(0.29)

−1.55(0.64)

−0.9(0.36)

diff_negative

1–45

0.2(0.32)

1.25(0.43)

0.725(0.28)

5–45

1.5(0.42)

1.23(0.32)

1.36(0.26)

1–90

0.55(0.32)

1.05(0.44)

0.8(0.27)

diff_arousal

1–45

−0.35(0.26)

1(0.52)

0.33(0.31)

5–45

0.475(0.38)

0.5(0.34)

0.49(0.25)

1–90

−0.15(0.34)

0.2(0.2)

0.03(0.2)

diff_fatigue

1–45

0.75(0.47)

1.4(0.53)

1.08(0.35)

5–45

1.45(0.46)

1.5(0.42)

1.48(0.31)

1–90

0.85(0.47)

1.2(0.53)

1.02(0.35)

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Jiang, J., Wei, Z., Yang, T., Liu, Y., Li, B., Du, F. (2022). Swiping Angles Differentially Influence Young and Old Users’ Performance and Experience on Swiping Gestures. In: Harris, D., Li, WC. (eds) Engineering Psychology and Cognitive Ergonomics. HCII 2022. Lecture Notes in Computer Science(), vol 13307. Springer, Cham. https://doi.org/10.1007/978-3-031-06086-1_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06086-1_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06085-4

  • Online ISBN: 978-3-031-06086-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics