Skip to main content

A Novel Algorithm for Bi-objective Performance-Energy Optimization of Applications with Continuous Performance and Linear Energy Profiles on Heterogeneous HPC Platforms

  • Conference paper
  • First Online:
Euro-Par 2021: Parallel Processing Workshops (Euro-Par 2021)

Abstract

Performance and energy are the two most important objectives for optimization on heterogeneous HPC platforms. This work studies a mathematical problem motivated by the bi-objective optimization of a matrix multiplication application on such platforms for performance and energy. We formulate the problem and propose an algorithm of polynomial complexity solving the problem where all the application profiles of objective type one are continuous and strictly increasing, and all the application profiles of objective type two are linear increasing. We solve the problem for the matrix multiplication application employing five heterogeneous processors that include two Intel multicore CPUs, an Nvidia K40c GPU, an Nvidia P100 PCIe GPU, and an Intel Xeon Phi. Based on our experiments, a dynamic energy saving of 17% is gained while tolerating a performance degradation of 5% (a saving of 106 J for an execution time increase of 0.05 s).

This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under Grant Number 14/IA/2474.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ait Aba, M., Zaourar, L., Munier, A.: Approximation algorithm for scheduling a chain of tasks on heterogeneous systems. In: Heras, D.B., Bougé, L. (eds.) Euro-Par 2017. LNCS, vol. 10659, pp. 353–365. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-75178-8_29

    Chapter  Google Scholar 

  2. Chakrabarti, A., Parthasarathy, S., Stewart, C.: A pareto framework for data analytics on heterogeneous systems: implications for green energy usage and performance. In: 2017 46th International Conference on Parallel Processing (ICPP), pp. 533–542. IEEE (2017)

    Google Scholar 

  3. Durillo, J.J., Nae, V., Prodan, R.: Multi-objective energy-efficient workflow scheduling using list-based heuristics. Futur. Gener. Comput. Syst. 36, 221–236 (2014)

    Article  Google Scholar 

  4. Fahad, M., Manumachu, R.R.: HCLWattsUp: energy API using system-level physical power measurements provided by power meters. Heterogeneous Computing Laboratory, University College Dublin, April 2021. https://csgitlab.ucd.ie/manumachu/hclwattsup

  5. Fard, H.M., Prodan, R., Barrionuevo, J.J.D., Fahringer, T.: A multi-objective approach for workflow scheduling in heterogeneous environments. In: Proceedings of the 2012 12th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (Ccgrid 2012), CCGRID 2012, pp. 300–309. IEEE Computer Society (2012)

    Google Scholar 

  6. Gholkar, N., Mueller, F., Rountree, B.: Power tuning HPC jobs on power-constrained systems. In: Proceedings of the 2016 International Conference on Parallel Architectures and Compilation, pp. 179–191. ACM (2016)

    Google Scholar 

  7. Kessaci, Y., Melab, N., Talbi, E.G.: A pareto-based metaheuristic for scheduling HPC applications on a geographically distributed cloud federation. Clust. Comput. 16(3), 451–468 (2013)

    Article  Google Scholar 

  8. Khaleghzadeh, H., Fahad, M., Shahid, A., Manumachu, R.R., Lastovetsky, A.: Bi-objective optimization of data-parallel applications on heterogeneous HPC platforms for performance and energy through workload distribution. IEEE Trans. Parallel Distrib. Syst. 32(3), 543–560 (2021)

    Article  Google Scholar 

  9. Khaleghzadeh, H., Fahad, M., Reddy Manumachu, R., Lastovetsky, A.: A novel data partitioning algorithm for dynamic energy optimization on heterogeneous high-performance computing platforms. Concurr. Comput.: Pract. Exper. 32(21), e5928 (2020)

    Article  Google Scholar 

  10. Kołodziej, J., Khan, S.U., Wang, L., Zomaya, A.Y.: Energy efficient genetic-based schedulers in computational grids. Concurr. Comput.: Pract. Exper. 27(4), 809–829 (2015)

    Article  Google Scholar 

  11. Lang, J., Rünger, G.: An execution time and energy model for an energy-aware execution of a conjugate gradient method with CPU/GPU collaboration. J. Parallel Distrib. Comput. 74(9), 2884–2897 (2014)

    Article  Google Scholar 

  12. Lastovetsky, A., Reddy, R.: Data partitioning with a realistic performance model of networks of heterogeneous computers. In: 2004 Proceedings of 18th International Parallel and Distributed Processing Symposium, p. 104 (2004)

    Google Scholar 

  13. Lastovetsky, A., Reddy, R.: Data partitioning with a functional performance model of heterogeneous processors. Int. J. High Perform. Comput. Appl. 21, 76–90 (2007)

    Article  Google Scholar 

  14. Lastovetsky, A., Reddy, R.: New model-based methods and algorithms for performance and energy optimization of data parallel applications on homogeneous multicore clusters. IEEE Trans. Parallel Distrib. Syst. 28(4), 1119–1133 (2017)

    Article  Google Scholar 

  15. Manumachu, R.R., Lastovetsky, A.: Bi-objective optimization of data-parallel applications on homogeneous multicore clusters for performance and energy. IEEE Trans. Comput. 67(2), 160–177 (2018)

    Article  MathSciNet  Google Scholar 

  16. Miettinen, K.: Nonlinear Multiobjective Optimization. Kluwer (1999)

    Google Scholar 

  17. Reddy Manumachu, R., Lastovetsky, A.L.: Design of self-adaptable data parallel applications on multicore clusters automatically optimized for performance and energy through load distribution. Concurr. Comput.: Pract. Exper. 31(4), e4958 (2019)

    Article  Google Scholar 

  18. Rossi, F.D., Xavier, M.G., De Rose, C.A., Calheiros, R.N., Buyya, R.: E-eco: performance-aware energy-efficient cloud data center orchestration. J. Netw. Comput. Appl. 78, 83–96 (2017)

    Article  Google Scholar 

  19. Rountree, B., Lowenthal, D.K., Funk, S., Freeh, V.W., de Supinski, B.R., Schulz, M.: Bounding energy consumption in large-scale MPI programs. In: SC 2007: Proceedings of the 2007 ACM/IEEE Conference on Supercomputing, pp. 1–9 (2007)

    Google Scholar 

  20. Talbi, E.G.: Metaheuristics: from Design to Implementation, vol. 74. Wiley, Hoboken (2009)

    Book  Google Scholar 

  21. Tarplee, K.M., Friese, R., Maciejewski, A.A., Siegel, H.J., Chong, E.K.: Energy and makespan tradeoffs in heterogeneous computing systems using efficient linear programming techniques. IEEE Trans. Parallel Distrib. Syst. 27(6), 1633–1646 (2016)

    Article  Google Scholar 

  22. Yu, L., Zhou, Z., Wallace, S., Papka, M.E., Lan, Z.: Quantitative modeling of power performance tradeoffs on extreme scale systems. J. Parallel Distrib. Comput. 84, 1–14 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ravi Reddy Manumachu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Khaleghzadeh, H., Manumachu, R.R., Lastovetsky, A. (2022). A Novel Algorithm for Bi-objective Performance-Energy Optimization of Applications with Continuous Performance and Linear Energy Profiles on Heterogeneous HPC Platforms. In: Chaves, R., et al. Euro-Par 2021: Parallel Processing Workshops. Euro-Par 2021. Lecture Notes in Computer Science, vol 13098. Springer, Cham. https://doi.org/10.1007/978-3-031-06156-1_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06156-1_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06155-4

  • Online ISBN: 978-3-031-06156-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics