Skip to main content

A Mixed Integer Linear Programming Algorithm for Plasmid Binning

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13234))

Included in the following conference series:

  • 761 Accesses

Abstract

The problem of analysing bacterial isolates in order to detect plasmids has been widely studied. With the development of Whole Genome Sequencing (WGS) technologies, several approaches have been proposed to bin contigs into putative plasmids. Reference-based approaches aim to bin contigs by mapping or comparing their sequences against databases of previously identified plasmids or plasmid genes. On the other hand, de novo approaches use contig features such as read coverage and length for plasmid binning. Hybrid approaches that combine both strategies have also been proposed recently.

We present PlasBin a mixed integer linear programming based hybrid approach for plasmid binning. We evaluate the performance of several binning methods on a real data set of bacterial samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    We rely on Unicycler as it is a widely used bacterial genome assembler, but any assembler providing an assembly graph can be used.

  2. 2.

    Our data set did not contain any samples from Acinetobacter baumannii.

References

  1. Antipov, D., Hartwick, N., Shen, M.W., Raiko, M., Lapidus, A.L., Pevzner, P.A.: plasmidSPAdes: assembling plasmids from whole genome sequencing data. Bioinformatics 32(22), 3380–3387 (2016). https://doi.org/10.1093/bioinformatics/btw493

    Article  Google Scholar 

  2. Arredondo-Alonso, S., et al.: gplas: a comprehensive tool for plasmid analysis using short-read graphs. Bioinformatics 36(12), 3874–3876 (2020). https://doi.org/10.1093/bioinformatics/btaa233

  3. Arredondo-Alonso, S., et al.: mlplasmids: a user-friendly tool to predict plasmid- and chromosome-derived sequences for single species. Microb. Genom. 4(11), e000224 (2018). https://doi.org/10.1099/mgen.0.000224

  4. Bankevich, A., et al.: Spades: a new genome assembly algorithm and its applications to single-cell sequencing. J. Comput. Biol. 19(5), 455–477 (2012). https://doi.org/10.1089/cmb.2012.0021

  5. Bertsimas, D., Tsitsiklis, J.: Introduction to Linear Optimization. Athena Scientific, 1st edn. (1997)

    Google Scholar 

  6. van der Graaf-van Bloois, L., Wagenaar, J.A., Zomer, A.L.: RFPlasmid: predicting plasmid sequences from short-read assembly data using machine learning. Microb. Genom. 7(11) (2021). https://doi.org/10.1099/mgen.0.000683

  7. Camacho, C., et al.: BLAST+: architecture and applications. BMC Bioinf. 10, 421 (2009). https://doi.org/10.1186/1471-2105-10-421

  8. Carattoli, A.: Plasmids and the spread of resistance. Int. J. Med. Microbiol. 303(6), 298–304 (2013). https://doi.org/10.1016/j.ijmm.2013.02.001

    Article  Google Scholar 

  9. Carattoli, A., et al.: In silico detection and typing of plasmids using plasmidfinder and plasmid multilocus sequence typing. Antimicrob. Agents Chemother. 58(7), 3895–3903 (2014). https://doi.org/10.1128/AAC.02412-14

  10. Dewar, A., et al.: Plasmids do not consistently stabilize cooperation across bacteria but may promote broad pathogen host-range. Nat. Ecol. Evol. 5(12), 1624–1636 (2021). https://doi.org/10.1038/s41559-021-01573-2

  11. Krawczyk, P., Lipinski, L., Dziembowski, A.: Plasflow: predicting plasmid sequences in metagenomic data using genome signatures. Nucleic Acids Res. 46(6), e35 (2018). https://doi.org/10.1093/nar/gkx1321

  12. Luo, L., et al.: Comparative genomics of Chinese and international isolates of Escherichia albertii: population structure and evolution of virulence and antimicrobial resistance. Microb. Genom. 7(12) (2021). https://doi.org/10.1099/mgen.0.000710

  13. McCormick, G.P.: Computability of global solutions to factorable nonconvex programs: Part I—convex underestimating problems. Math. Program. 10(1), 147–175, e000224 (1976). https://doi.org/10.1007/BF01580665

  14. Müller, R., Chauve, C.: HyAsP, a greedy tool for plasmids identification. Bioinformatics 35(21), 4436–4439 (2019). https://doi.org/10.1093/bioinformatics/btz413

    Article  Google Scholar 

  15. Nishida, H.: Comparative analyses of base compositions, DNA sizes, and dinucleotide frequency profiles in archaeal and bacterial chromosomes and plasmids. Int. J. Evol. Biol. 2012, 342482 (2012). https://doi.org/10.1155/2012/342482

  16. Pellow, D., Mizrahi, I., Shamir, R.: Plasclass improves plasmid sequence classification. PLoS Comput. Biol. 16(4), 1–9 (2020). https://doi.org/10.1371/journal.pcbi.1007781

    Article  Google Scholar 

  17. Robertson, J., Nash, J.: MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb. Genom. 4(8), e000206 (2018). https://doi.org/10.1099/mgen.0.000206

  18. Rozov, R., et al.: Recycler: an algorithm for detecting plasmids from de novo assembly graphs. Bioinformatics 33(4), 475–482 (2016). https://doi.org/10.1093/bioinformatics/btw651

  19. Wick, R.R., Judd, L.M., Gorrie, C.L., Holt, K.E.: Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Comput. Biol. 13(6), 1–22 (2017). https://doi.org/10.1371/journal.pcbi.1005595

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aniket Mane .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mane, A., Faizrahnemoon, M., Chauve, C. (2022). A Mixed Integer Linear Programming Algorithm for Plasmid Binning. In: Jin, L., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2022. Lecture Notes in Computer Science(), vol 13234. Springer, Cham. https://doi.org/10.1007/978-3-031-06220-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06220-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06219-3

  • Online ISBN: 978-3-031-06220-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics