Abstract
A phylogenetic network is a simplex network if the child of every reticulation node is a network leaf and each tree node has at most one reticulation node as its child. Simplex networks are a superclass of phylogenetic trees and a subclass of tree-child networks. Generalizing the Sackin index to phylogenetic networks, we prove that the expected Sackin index of a random simplex network is asymptotically \(\varTheta (n^{7/4})\) in the uniform model.
This work was supported by MOE Tier 1 grant R-146-000-318-114.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The expected Sackin index of a phylogenetic tree on n is different from that reported in literature by n. Here, we work on “planted” phylogenetic trees.
References
Avino, M., Ng, G.T., He, Y., Renaud, M.S., Jones, B.R., Poon, A.F.: Tree shape-based approaches for the comparative study of cophylogeny. Ecol. Evol. 9(12), 6756–6771 (2019)
Bienvenu, F., Lambert, A., Steel, M.: Combinatorial and stochastic properties of ranked tree-child networks. arXiv preprint arXiv:2007.09701 (2020)
Bouvel, M., Gambette, P., Mansouri, M.: Counting phylogenetic networks of level 1 and 2. J. Math. Biol. 81(6), 1357–1395 (2020)
Cardona, G., Pons, J.C., Scornavacca, C.: Generation of binary tree-child phylogenetic networks. PLoS Comput. Biol. 15(9), e1007347 (2019)
Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic networks. IEEE/ACM-TCBB 6(4), 552–569 (2009). https://doi.org/10.1109/TCBB.2007.70270
Cardona, G., Zhang, L.: Counting and enumerating tree-child networks and their subclasses. J. Comput. Syst. Sci. 114, 84–104 (2020)
Flajolet, P., Odlyzko, A.: The average height of binary trees and other simple trees. J. Comput. Syst. Sci. 25(2), 171–213 (1982)
Francis, A.R., Steel, M.: Which phylogenetic networks are merely trees with additional arcs? Syst. Biol. 64(5), 768–777 (2015)
Fuchs, M., Yu, G.R., Zhang, L.: Asymptotic enumeration and distributional properties of galled networks. arXiv preprint arXiv:2010.13324 (2020)
Fuchs, M., Yu, G.R., Zhang, L.: On the asymptotic growth of the number of tree-child networks. Eur. J. Comb. 93, 103278 (2021)
Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Boston (1989)
Gunawan, A.D., DasGupta, B., Zhang, L.: A decomposition theorem and two algorithms for reticulation-visible networks. Inf. Comput. 252, 161–175 (2017)
Gunawan, A.D., Rathin, J., Zhang, L.: Counting and enumerating galled networks. Discret. Appl. Math. 283, 644–654 (2020)
Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. MIT Press, Cambridge (2014)
Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proceedings of CSB 2003 (2003)
Huson, D.H., Klöpper, T.H.: Beyond galled trees - decomposition and computation of galled networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 211–225. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71681-5_15
Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press, Cambridge (2010)
McDiarmid, C., Semple, C., Welsh, D.: Counting phylogenetic networks. Ann. Comb. 19(1), 205–224 (2015). https://doi.org/10.1007/s00026-015-0260-2
Mir, A., Rosselló, F., Rotger, L.A.: A new balance index for phylogenetic trees. Math. Biosci. 241(1), 125–136 (2013)
Pons, M., Batle, J.: Combinatorial characterization of a certain class of words and a conjectured connection with general subclasses of phylogenetic tree-child networks. Sci. Rep. 11(1), 1–14 (2021)
Sackin, M.J.: “Good’’ and “bad’’ phenograms. Syst. Biol. 21(2), 225–226 (1972)
Shao, K.T., Sokal, R.R.: Tree balance. Syst. Zool. 39(3), 266–276 (1990)
Steel, M.: Phylogeny: discrete and random processes in evolution. SIAM (2016)
Stufler, B.: A branching process approach to level-\(k\) phylogenetic networks. Random Struct. Algorithms (2021). https://doi.org/10.1002/rsa.21065
Xue, C., Liu, Z., Goldenfeld, N.: Scale-invariant topology and bursty branching of evolutionary trees emerge from niche construction. Proc. Natl. Acad. Sci. 117(14), 7879–7887 (2020)
Zhang, L.: Generating normal networks via leaf insertion and nearest neighbor interchange. BMC Bioinform. 20(20), 1–9 (2019)
Zhang, L.: Clusters, trees, and phylogenetic network classes. In: Warnow, T. (ed.) Bioinformatics and Phylogenetics. CB, vol. 29, pp. 277–315. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10837-3_12
Acknowledgment
The author thanks Michael Fuchs for reading the first draft of this paper. He also thanks anonymous reviewers for their valuable comments on this work which was submitted to the RECOMB-CG 2020.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Appendices
Appendix A
Proposition A.1. Let \( S_{k}= {n\atopwithdelims ()k} \frac{(2n-2)!}{2^{n-1}(k-1)!} \) and \(k_0=\sqrt{n+1}-1\). Then,
-
\(S_{k}\le S_{k+1}\) for \(k\in [1, k_0]\);
-
\(S_{k} > S_{k+1}\) if \(k_0<k<2k_0\);
-
\(S_{k}>2S_{k+1}\) if \(k\in [2k_0, \infty )\).
Proof
Note that
If \(k\le k_0\), \((k+1)^2\le (\sqrt{n+1}-1+1)^2=n+1\) and, equivalently, \(k(1+k)\le n-k\) and thus \({S_{k+1}}=\frac{n-k}{k(k+1)}S_k\ge S_k\). Similarly, \({S_{k+1}}< S_k\) if \(k>k_0\).
If \(k\ge 2k_0\), \((k+2)^2\ge 4(n+1)\) and \(k^2+k\ge 4(n-k)+k\ge 4(n-k)\) and therefore, \({S_{k+1}}\le \frac{1}{4} S_k< \frac{1}{2} S_k\).
Proposition A.2. \(D_C(k, n-k)\) is a decreasing function of k on \([1, n-1]\).
Proof
Hence,
Appendix B
Proposition B.1. Let P be a phylogenetic tree on n taxa. there exists a 1-to-1 mapping \(\phi : \mathcal{T}(P)\cup \{\rho \}\rightarrow \mathcal{L}(P)\) such that u is an ancestor of \(\phi (u)\) for each \(u\in \mathcal{T}(P) \cup \{\rho \}\).
Proof
We prove the fact by mathematical induction on n. When \(n=1\), we simply map the root \(\rho \) to the only leaf.
Assume the fact is true for \(n\le k\), where \(k\ge 1\). For a phylogenetic tree P with \(k+1\) leaves, we let the child of the root \(\rho \) be u and the two grandchildren be v and w. We consider the subtree \(P'\) induced by u, v and all the descendants of v and the subtree \(P''\) induced by u, w and all the descendants of w.
Obviously, both \(T'\) and \(T''\) have less than k leaves. By induction, there is a 1-to-1 mapping \(\phi ': \mathcal{T}(P')\cup \{u\} \rightarrow \mathcal{L}(P')\) satisfying the constraints on leaves, and there is a 1-to-1 mapping \(\phi '': \mathcal{T}(P'')\cup \{u\} \rightarrow \mathcal{L}(P'')\) satisfying the constraints on leaves. Let \(\phi '(u)=\ell \). Then, the function that maps \(\rho \) to \(\ell \), u to \(\phi ''(u)\) and all the other tree nodes x to \(\phi '(x)\) or \(\phi ''(x)\) depending whether it is in \(P'\) or \(P''\). It is easy to verify that \(\phi \) is a desired mapping.
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Zhang, L. (2022). The Sackin Index of Simplex Networks. In: Jin, L., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2022. Lecture Notes in Computer Science(), vol 13234. Springer, Cham. https://doi.org/10.1007/978-3-031-06220-9_4
Download citation
DOI: https://doi.org/10.1007/978-3-031-06220-9_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06219-3
Online ISBN: 978-3-031-06220-9
eBook Packages: Computer ScienceComputer Science (R0)