Skip to main content

The Sackin Index of Simplex Networks

  • Conference paper
  • First Online:
Comparative Genomics (RECOMB-CG 2022)

Part of the book series: Lecture Notes in Computer Science ((LNBI,volume 13234))

Included in the following conference series:

  • 693 Accesses

Abstract

A phylogenetic network is a simplex network if the child of every reticulation node is a network leaf and each tree node has at most one reticulation node as its child. Simplex networks are a superclass of phylogenetic trees and a subclass of tree-child networks. Generalizing the Sackin index to phylogenetic networks, we prove that the expected Sackin index of a random simplex network is asymptotically \(\varTheta (n^{7/4})\) in the uniform model.

This work was supported by MOE Tier 1 grant R-146-000-318-114.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The expected Sackin index of a phylogenetic tree on n is different from that reported in literature by n. Here, we work on “planted” phylogenetic trees.

References

  1. Avino, M., Ng, G.T., He, Y., Renaud, M.S., Jones, B.R., Poon, A.F.: Tree shape-based approaches for the comparative study of cophylogeny. Ecol. Evol. 9(12), 6756–6771 (2019)

    Article  Google Scholar 

  2. Bienvenu, F., Lambert, A., Steel, M.: Combinatorial and stochastic properties of ranked tree-child networks. arXiv preprint arXiv:2007.09701 (2020)

  3. Bouvel, M., Gambette, P., Mansouri, M.: Counting phylogenetic networks of level 1 and 2. J. Math. Biol. 81(6), 1357–1395 (2020)

    Article  MathSciNet  Google Scholar 

  4. Cardona, G., Pons, J.C., Scornavacca, C.: Generation of binary tree-child phylogenetic networks. PLoS Comput. Biol. 15(9), e1007347 (2019)

    Article  Google Scholar 

  5. Cardona, G., Rosselló, F., Valiente, G.: Comparison of tree-child phylogenetic networks. IEEE/ACM-TCBB 6(4), 552–569 (2009). https://doi.org/10.1109/TCBB.2007.70270

    Article  Google Scholar 

  6. Cardona, G., Zhang, L.: Counting and enumerating tree-child networks and their subclasses. J. Comput. Syst. Sci. 114, 84–104 (2020)

    Article  MathSciNet  Google Scholar 

  7. Flajolet, P., Odlyzko, A.: The average height of binary trees and other simple trees. J. Comput. Syst. Sci. 25(2), 171–213 (1982)

    Article  MathSciNet  Google Scholar 

  8. Francis, A.R., Steel, M.: Which phylogenetic networks are merely trees with additional arcs? Syst. Biol. 64(5), 768–777 (2015)

    Article  Google Scholar 

  9. Fuchs, M., Yu, G.R., Zhang, L.: Asymptotic enumeration and distributional properties of galled networks. arXiv preprint arXiv:2010.13324 (2020)

  10. Fuchs, M., Yu, G.R., Zhang, L.: On the asymptotic growth of the number of tree-child networks. Eur. J. Comb. 93, 103278 (2021)

    Article  MathSciNet  Google Scholar 

  11. Graham, R.L., Knuth, D.E., Patashnik, O.: Concrete Mathematics: A Foundation for Computer Science. Addison-Wesley, Boston (1989)

    MATH  Google Scholar 

  12. Gunawan, A.D., DasGupta, B., Zhang, L.: A decomposition theorem and two algorithms for reticulation-visible networks. Inf. Comput. 252, 161–175 (2017)

    Article  MathSciNet  Google Scholar 

  13. Gunawan, A.D., Rathin, J., Zhang, L.: Counting and enumerating galled networks. Discret. Appl. Math. 283, 644–654 (2020)

    Article  MathSciNet  Google Scholar 

  14. Gusfield, D.: ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. MIT Press, Cambridge (2014)

    Book  Google Scholar 

  15. Gusfield, D., Eddhu, S., Langley, C.: Efficient reconstruction of phylogenetic networks with constrained recombination. In: Proceedings of CSB 2003 (2003)

    Google Scholar 

  16. Huson, D.H., Klöpper, T.H.: Beyond galled trees - decomposition and computation of galled networks. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 211–225. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71681-5_15

    Chapter  Google Scholar 

  17. Huson, D.H., Rupp, R., Scornavacca, C.: Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  18. McDiarmid, C., Semple, C., Welsh, D.: Counting phylogenetic networks. Ann. Comb. 19(1), 205–224 (2015). https://doi.org/10.1007/s00026-015-0260-2

    Article  MathSciNet  MATH  Google Scholar 

  19. Mir, A., Rosselló, F., Rotger, L.A.: A new balance index for phylogenetic trees. Math. Biosci. 241(1), 125–136 (2013)

    Article  MathSciNet  Google Scholar 

  20. Pons, M., Batle, J.: Combinatorial characterization of a certain class of words and a conjectured connection with general subclasses of phylogenetic tree-child networks. Sci. Rep. 11(1), 1–14 (2021)

    Article  Google Scholar 

  21. Sackin, M.J.: “Good’’ and “bad’’ phenograms. Syst. Biol. 21(2), 225–226 (1972)

    Article  Google Scholar 

  22. Shao, K.T., Sokal, R.R.: Tree balance. Syst. Zool. 39(3), 266–276 (1990)

    Google Scholar 

  23. Steel, M.: Phylogeny: discrete and random processes in evolution. SIAM (2016)

    Google Scholar 

  24. Stufler, B.: A branching process approach to level-\(k\) phylogenetic networks. Random Struct. Algorithms (2021). https://doi.org/10.1002/rsa.21065

  25. Xue, C., Liu, Z., Goldenfeld, N.: Scale-invariant topology and bursty branching of evolutionary trees emerge from niche construction. Proc. Natl. Acad. Sci. 117(14), 7879–7887 (2020)

    Article  Google Scholar 

  26. Zhang, L.: Generating normal networks via leaf insertion and nearest neighbor interchange. BMC Bioinform. 20(20), 1–9 (2019)

    Google Scholar 

  27. Zhang, L.: Clusters, trees, and phylogenetic network classes. In: Warnow, T. (ed.) Bioinformatics and Phylogenetics. CB, vol. 29, pp. 277–315. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10837-3_12

    Chapter  Google Scholar 

Download references

Acknowledgment

The author thanks Michael Fuchs for reading the first draft of this paper. He also thanks anonymous reviewers for their valuable comments on this work which was submitted to the RECOMB-CG 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louxin Zhang .

Editor information

Editors and Affiliations

Appendices

Appendix A

Proposition A.1. Let \( S_{k}= {n\atopwithdelims ()k} \frac{(2n-2)!}{2^{n-1}(k-1)!} \) and \(k_0=\sqrt{n+1}-1\). Then,

  • \(S_{k}\le S_{k+1}\) for \(k\in [1, k_0]\);

  • \(S_{k} > S_{k+1}\) if \(k_0<k<2k_0\);

  • \(S_{k}>2S_{k+1}\) if \(k\in [2k_0, \infty )\).

Proof

Note that

$$S_{k+1}=\frac{n-k}{k(k+1)}S_k.$$

If \(k\le k_0\), \((k+1)^2\le (\sqrt{n+1}-1+1)^2=n+1\) and, equivalently, \(k(1+k)\le n-k\) and thus \({S_{k+1}}=\frac{n-k}{k(k+1)}S_k\ge S_k\). Similarly, \({S_{k+1}}< S_k\) if \(k>k_0\).

If \(k\ge 2k_0\), \((k+2)^2\ge 4(n+1)\) and \(k^2+k\ge 4(n-k)+k\ge 4(n-k)\) and therefore, \({S_{k+1}}\le \frac{1}{4} S_k< \frac{1}{2} S_k\).

Proposition A.2. \(D_C(k, n-k)\) is a decreasing function of k on \([1, n-1]\).

Proof

By Eq. (1) and Eq. (12),

$$D_C(k, n-k)=\frac{n(2n-1)}{k}\left( \frac{4^kk!k!}{(2k)!}-1\right) . $$

Hence,

$$\begin{aligned}&n(2n-1)[D_C(k, n-k)-D_C(k+1, n-k-1)]\\= & {} \frac{2^{2k}(k-1)!k!}{(2k)!} - \frac{2^{2k}4k!(k+1)!}{(2k+2)!} - \frac{1}{k(k+1)}\\= & {} \frac{2^{2k}k!(k-1)!}{(2k+1)!} - \frac{1}{k(k+1)}\\= & {} \frac{1}{k(k+1)}\left[ \frac{2^{2k}k!(k+1)!}{(2k+1)!} - 1\right] \\= & {} \frac{1}{k(k+1)}\left[ \frac{ 4\times 6\times \cdots 2k\times (2k+2)}{ 3\times 5\times \cdots (2k+1)} -1\right] \\> & {} 0. \end{aligned}$$

Appendix B

Proposition B.1. Let P be a phylogenetic tree on n taxa. there exists a 1-to-1 mapping \(\phi : \mathcal{T}(P)\cup \{\rho \}\rightarrow \mathcal{L}(P)\) such that u is an ancestor of \(\phi (u)\) for each \(u\in \mathcal{T}(P) \cup \{\rho \}\).

Proof

We prove the fact by mathematical induction on n. When \(n=1\), we simply map the root \(\rho \) to the only leaf.

Assume the fact is true for \(n\le k\), where \(k\ge 1\). For a phylogenetic tree P with \(k+1\) leaves, we let the child of the root \(\rho \) be u and the two grandchildren be v and w. We consider the subtree \(P'\) induced by u, v and all the descendants of v and the subtree \(P''\) induced by u, w and all the descendants of w.

Obviously, both \(T'\) and \(T''\) have less than k leaves. By induction, there is a 1-to-1 mapping \(\phi ': \mathcal{T}(P')\cup \{u\} \rightarrow \mathcal{L}(P')\) satisfying the constraints on leaves, and there is a 1-to-1 mapping \(\phi '': \mathcal{T}(P'')\cup \{u\} \rightarrow \mathcal{L}(P'')\) satisfying the constraints on leaves. Let \(\phi '(u)=\ell \). Then, the function that maps \(\rho \) to \(\ell \), u to \(\phi ''(u)\) and all the other tree nodes x to \(\phi '(x)\) or \(\phi ''(x)\) depending whether it is in \(P'\) or \(P''\). It is easy to verify that \(\phi \) is a desired mapping.

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhang, L. (2022). The Sackin Index of Simplex Networks. In: Jin, L., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2022. Lecture Notes in Computer Science(), vol 13234. Springer, Cham. https://doi.org/10.1007/978-3-031-06220-9_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06220-9_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06219-3

  • Online ISBN: 978-3-031-06220-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics