Abstract
Dissimilarity measures for phylogenetic trees have long been used for analyzing inferred trees and understanding the performance of phylogenetic methods. Given their importance, a wide array of such measures have been developed, some of which are based on the tree topologies alone, and others that also take branch lengths into account. Similarly, a number of dissimilarity measures of phylogenetic networks have been developed in the last two decades. However, to the best of our knowledge, all these measures are based solely on the topologies of phylogenetic networks and ignore branch lengths. In this paper, we propose two phylogenetic network dissimilarity measures that take both topology and branch lengths into account. We demonstrate the behavior of these two measures on pairs of related networks. Furthermore, we show how these measures can be used to cluster a set of phylogenetic networks obtained by an inference method, illustrating this application on the posterior sample of phylogenetic networks. Both measures are implemented in the publicly available software package PhyloNet.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Allen, B.L., Steel, M.: Subtree transfer operations and their induced metrics on evolutionary trees. Ann. Comb. 5(1), 1–15 (2001). https://doi.org/10.1007/s00026-001-8006-8
Avino, M., Ng, G.T., He, Y., Renaud, M.S., Jones, B.R., Poon, A.F.Y.: Tree shape-based approaches for the comparative study of cophylogeny. Ecol. Evol. 9(12), 6756–6771 (2019). https://doi.org/10.1002/ece3.5185
Billera, L.J., Holmes, S.P., Vogtmann, K.: Geometry of the space of phylogenetic trees. Adv. Appl. Math. 27(4), 733–767 (2001)
Bouckaert, R., et al.: BEAST 2.5: an advanced software platform for Bayesian evolutionary analysis. PLoS Comput. Biol. 15(4), 1–28 (2019). https://doi.org/10.1371/journal.pcbi.1006650
Bouvel, M., Gambette, P., Mansouri, M.: Counting phylogenetic networks of level 1 and 2. J. Math. Biol. 81(6), 1357–1395 (2020). https://doi.org/10.1007/s00285-020-01543-5
Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks I: generalizations of the Robinson-Foulds metric. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(1), 46–61 (2008)
Cardona, G., Llabrés, M., Rosselló, F., Valiente, G.: Metrics for phylogenetic networks II: nodal and triplets metrics. IEEE/ACM Trans. Comput. Biol. Bioinform. 6(3), 454–469 (2008)
Dinh, V., Bilge, A., Zhang, C., Matsen IV, F.A.: Probabilistic path hamiltonian Monte Carlo. In: Precup, D., Teh, Y.W. (eds.) Proceedings of the 34th International Conference on Machine Learning. Proceedings of Machine Learning Research, vol. 70, pp. 1009–1018. PMLR (2017)
Elworth, R.A.L., Ogilvie, H.A., Zhu, J., Nakhleh, L.: Advances in computational methods for phylogenetic networks in the presence of hybridization. In: Warnow, T. (ed.) Bioinformatics and Phylogenetics. CB, vol. 29, pp. 317–360. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-10837-3_13
Felsenstein, J.: The number of evolutionary trees. Syst. Zool. 27(1), 27–33 (1978)
Gavryushkin, A., Drummond, A.J.: The space of ultrametric phylogenetic trees. J. Theor. Biol. 403, 197–208 (2016). https://doi.org/10.1016/j.jtbi.2016.05.001
Heled, J., Drummond, A.J.: Bayesian inference of species trees from multilocus data. Mol. Biol. Evol. 27(3), 570–580 (2009). https://doi.org/10.1093/molbev/msp274
Hoffer, B.L.: Language borrowing and the indices of adaptability and receptivity. Intercult. Commun. Stud. 14(2), 53–72 (2005)
Hudson, R.R.: Generating samples under a Wright-Fisher neutral model of genetic variation. Bioinformatics 18(2), 337–338 (2002). https://doi.org/10.1093/bioinformatics/18.2.337
Jain, C., Rodriguez-R, L.M., Phillippy, A.M., Konstantinidis, K.T., Aluru, S.: High throughput ANI analysis of 90K prokaryotic genomes reveals clear species boundaries. Nat. Commun. 9(1), 5114 (2018). https://doi.org/10.1038/s41467-018-07641-9
Kannan, L., Wheeler, W.: Maximum parsimony on phylogenetic networks. Algorithms Mol. Biol. 7, 9 (2012). https://doi.org/10.1186/1748-7188-7-9
Koskela, J.: Zig-zag sampling for discrete structures and non-reversible phylogenetic MCMC. J. Comput. Graph. Stat. (2022). https://doi.org/10.1080/10618600.2022.2032722. Accepted for publication
Kuhner, M.K., Felsenstein, J.: A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Mol. Biol. Evol. 11(3), 459–468 (1994)
Maddison, D.R.: The discovery and importance of multiple islands of most-parsimonious trees. Syst. Biol. 40(3), 315–328 (1991)
Michael, T.P., VanBuren, R.: Building near-complete plant genomes. Curr. Opin. Plant Biol. 54, 26–33 (2020). https://doi.org/10.1016/j.pbi.2019.12.009. Genome studies and molecular genetics
Nakhleh, L.: Evolutionary phylogenetic networks: models and issues. In: Heath, L., Ramakrishnan, N. (eds.) Problem Solving Handbook in Computational Biology and Bioinformatics, pp. 125–158. Springer, Boston (2010). https://doi.org/10.1007/978-0-387-09760-2_7
Nakhleh, L.: A metric on the space of reduced phylogenetic networks. IEEE/ACM Trans. Comput. Biol. Bioinform. 7(2), 218–222 (2010). https://doi.org/10.1109/TCBB.2009.2
Pardi, F., Scornavacca, C.: Reconstructible phylogenetic networks: do not distinguish the indistinguishable. PLoS Comput. Biol. 11(4), 1–23 (2015). https://doi.org/10.1371/journal.pcbi.1004135
Rambaut, A., Grass, N.C.: Seq-Gen: an application for the Monte Carlo simulation of DNA sequence evolution along phylogenetic trees. Bioinformatics 13(3), 235–238 (1997). https://doi.org/10.1093/bioinformatics/13.3.235
Rhie, A., et al.: Towards complete and error-free genome assemblies of all vertebrate species. Nature 592(7856), 737–746 (2021). https://doi.org/10.1038/s41586-021-03451-0
Robinson, D., Foulds, L.: Comparison of phylogenetic trees. Math. Biosci. 53(1), 131–147 (1981). https://doi.org/10.1016/0025-5564(81)90043-2
Rokas, A., Williams, B.L., King, N., Carroll, S.B.: Genome-scale approaches to resolving incongruence in molecular phylogenies. Nature 425(6960), 798–804 (2003)
Steel, M.A., Penny, D.: Distributions of tree comparison metrics-some new results. Syst. Biol. 42(2), 126–141 (1993)
Stockham, C., Wang, L.S., Warnow, T.: Statistically based postprocessing of phylogenetic analysis by clustering. Bioinformatics 18(suppl_1), S285–S293 (2002)
Swofford, D., Olson, G., Waddell, P., Hillis, D.: Phylogenetic inference. In: Hillis, D., Moritz, C., Mable, B. (eds.) Molecular Systematics, pp. 407–514. Sinauer Associates, Sunderland (2004). Chap. 11
Than, C., Ruths, D., Nakhleh, L.: PhyloNet: a software package for analyzing and reconstructing reticulate evolutionary relationships. BMC Bioinform. 9(1), 1–16 (2008). https://doi.org/10.1186/1471-2105-9-322
Wen, D., Nakhleh, L.: Coestimating reticulate phylogenies and gene trees from multilocus sequence data. Syst. Biol. 67(3), 439–457 (2017). https://doi.org/10.1093/sysbio/syx085
Wen, D., Yu, Y., Zhu, J., Nakhleh, L.: Inferring phylogenetic networks using PhyloNet. Syst. Biol. 67(4), 735–740 (2018)
Whidden, C., Matsen, F.A., IV.: Quantifying MCMC exploration of phylogenetic tree space. Syst. Biol. 64(3), 472–491 (2015). https://doi.org/10.1093/sysbio/syv006
Zhang, C., Ogilvie, H.A., Drummond, A.J., Stadler, T.: Bayesian inference of species networks from multilocus sequence data. Mol. Biol. Evol. 35(2), 504–517 (2017). https://doi.org/10.1093/molbev/msx307
Zhu, J., Yu, Y., Nakhleh, L.: In the light of deep coalescence: revisiting trees within networks. BMC Bioinform. 17(14), 415 (2016). https://doi.org/10.1186/s12859-016-1269-1
Acknowledgements
We thank Zhen Cao for contributing the MCMC posterior sample files for the simulated data set. This work was supported in part by NSF grants CCF-1514177, CCF-1800723 and DBI-2030604 to L.N.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Yakici, B.A., Ogilvie, H.A., Nakhleh, L. (2022). Phylogenetic Network Dissimilarity Measures that Take Branch Lengths into Account. In: Jin, L., Durand, D. (eds) Comparative Genomics. RECOMB-CG 2022. Lecture Notes in Computer Science(), vol 13234. Springer, Cham. https://doi.org/10.1007/978-3-031-06220-9_6
Download citation
DOI: https://doi.org/10.1007/978-3-031-06220-9_6
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06219-3
Online ISBN: 978-3-031-06220-9
eBook Packages: Computer ScienceComputer Science (R0)