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Abstract. Attention-based convolutional networks have attracted great
interest in recent years and achieved great success in improving repre-
sentation capability of networks. However, most attention mechanisms
are complicated and implemented by introducing a large number of ex-
tra parameters. In this study, we proposed a lightweight attention-based
convolutional network (ConvNet-CA) that has a low computation com-
plexity yet a high performance for brain disease detection. ConvNet-CA
weights the importance of different channels in features maps and pays
more attention to important channels by introducing an efficient channel
attention mechanism. We evaluated ConvNet-CA on a publicly accessi-
ble benchmark dataset: Whole Brain Atlas. The brain diseases involved
in this study are stroke, neoplastic disease, degenerative disease, and
infectious disease. The experimental results showed that ConvNet-CA
achieved highly competitive performance over state-of-the-art methods
on distinguishing different types of brain diseases, with an overall multi-
class classification accuracy of 94.88±3.64%.
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1 Introduction

Brain disease is one of the most dangerous diseases which threaten human’s
health. It can cause headaches, coma, visual impairment, and movement disorder.
There are varieties of brain diseases, and usually, doctors cannot distinguish them
on the surface. Magnetic resonance imaging (MRI) is acknowledged as an ideal
method to scan the brain’s inner structure. Through MRI, clinicians can observe
and assess the inner condition of the brain. In this way, clinicians decide whether
the patient has a brain disease and which one the patient is suffering [1].

Although MRI scans enable clinicians to examine the brain’s inner structure
and condition, it is still not easy to detect pathological brains. The difference
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between healthy brains and pathological brains can be very subtle [12]. Even the
most experienced clinicians cannot avoid mistakes in brain examination. There-
fore, using a computer-aided diagnosis system to help brain disease detection is
becoming increasingly necessary.

There exist some methods that apply artificial intelligence to detect patho-
logical brains automatically. Wang, et al. [15] proposed a pathological brain de-
tection method based on stationary wavelet entropy. Nayak, et al. [9] designed
a brain disease detection approach using improved particle swarm optimization
and evolutionary extreme learning machine. These methods were effective in the
model training and have achieved relatively high accuracy, but to extract more
representative features from brain medical images, we opt to utilise deep learn-
ing to process medical images. Deep learning has been widely applied in image
classification tasks in recent years. Due to its flexibility, it can be adapted to
special problems [3]. As one of the most commonly used models, convolutional
neural networks (CNNs) are often adopted as the backbone model [13]. Although
they have shown superiority over traditional machine learning-based methods,
the training is usually time-consuming, especially when a CNN has lots of layers.
Our goal is to propose a lightweight CNN that is easy to train, while achieving
better results than popular CNNs.

In this study, we introduced an efficient channel attention module that can
be easily integrated into CNN architectures and proposed a novel lightweight
attention-based CNN for brain disease detection. Our proposed model, named
ConvNet-CA, has a concise structure and performs better than many large-scale
CNNs [2, 5, 7, 11]. The main contribution of this study is we designed an efficient
and lightweight model for pathological brain detection with high accuracy.

2 Data

In this study, we include a total number of 197 axial-oriented MRI T2-weighted
images of healthy brain and pathological brains. Each image has a consistent di-
mension of 256×256 pixels. These images are acquired from a publicly accessible
dataset: the Whole Brain Atlas [8]. There are five categories of brain images in
our study, including the normal brain, stroke, neoplastic disease, degenerative
disease, and infectious disease. Statistic information of the dataset is listed in
Table 1. Some samples from the dataset are shown in Fig. 1. The detection of
brain disease is considered as a 5-class classification task.

3 Methodology

This study applies advanced deep learning technology to diagnose brain disease
based on MRI scans. Our model is based on a CNN architurecture and the
Efficient Channel Attention (ECA) module [14]. The overall structure of our
proposed model ConvNet-CA is shown in Fig. 3. It consists of three convolutional
layers for feature extraction, with each layer followed by a ECA module to refine
feature maps. The ECA modules only introduce a few parameters while allowing
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(a) Normal Brain (b) Stroke (c) Neoplastic

Disease

(d) Degenerative

Disease

(e) Infectious

Disease

Fig. 1. Brain MRI samples from the dataset

Table 1. Statistic information of the dataset.

Categories Samples

Normal brain 20
Stroke 72
Neoplastic disease 31
Degenerative disease 41
Infectious disease 33

the model to focus on more important channels of feature maps. Pooling layers
are added to summarise re-fined feature maps and reduce the size of feature
maps. In this section, Conv-CA is explained in details.

3.1 Convolutional neural network

Researchers applied CNNs and developed hundreds of variants intending to solve
almost every vision task. Although there existed some competitors in recent
years such as graph neural networks and transformers, CNNs remain the mostly-
adopted backbone of network architecture in the computer vision field. A CNN
architecture typically has four elements, convolutional layer, pooling, activation
function, and fully connected layer. Besides, dropout is one of the most applied
techniques used in CNN training.

Convolutional layer. Convolutional layers are the most important parts
of CNNs. They are used for feature extraction. In most cases, a CNN consists
of many convolutional layers. These convolutional layers form a hierarchy that
enables a CNN to extract deeper and deeper features of input data. In a convolu-
tional layer, kernels move upon every region of the input data in a fixed order to
produce feature maps. These feature maps are then fed to the next convolutional
layer as new input.

Pooling. As a down-sampling method, pooling is used for removing redun-
dant information in feature maps and preserving the most valuable information.
Max pooling and average pooling are two of the most commonly pooling meth-
ods. Max pooling selects the maximal value as the representation of a local
region, while average pooling utilises the mean value of a local region.
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Activation function. A convolutional layer is often followed by an acti-
vation function that introduces nonlinearity. In this way, it enables CNNs to
better portray the data distribution of the real world. The most commonly used
activation function and also what we adopted in this study is ReLU.

Fully connected layer. A fully connected layer aims to map the distributed
feature representation to sample annotation space. A fully connected layer is
usually placed at the end of CNNs. It acts as a classifier of the model. In this
research, we applied a fully connected layer at the end of the model structure.

Dropout. When training CNNs, we randomly select parts of neurons in
hidden layers and set them to zero [10]. This operation is called dropout. Dropout
is widely used in training deep neural networks for relieve overfitting. In this
study, the dropout method is applied in the fully connected layer.

ConvNet-CA adopts a lightweight CNN as the backbone which consists of
three convolutional layers with ReLU, three max pooling layers, and one fully
connected layer with a dropout strategy.

3.2 Channel attention mechanism

Attention mechanism has been one of the most prominent progress researchers
made in the deep learning over the past few years. It enable neural networks
to focus on the most valuable information. In image analysis, spatial attention
and channel attention are two of the most widely used attention mechanisms.
Since Hu, et al. [6] proposed SENet where a channel attention module proved
its potential, researchers have been looking for more advanced methods to make
the best use of channel attention in feature extraction.

The channel attention module of SENet, named SE module, is divided into
two steps, squeeze and excitation (see Fig. 2a). In the squeeze step, global average
pooling summarises each feature map and compresses its dimension to 1 × 1.
Supposing that the input block ω has a dimension of H × W × C, where H
denotes height, W denotes width, and C denotes the number of channels, the
squeeze step can be described as

Gsqueeze(ωc) =
1

H ×W

H∑
i=1

W∑
j=1

ωc(i, j) (1)

The squeeze step produces a global representation vector z ∈ R1×1×C . This
vector does not directly weight the importance of channels. Instead, two fully
connected layers are employed to learn importance of different channels. The
first fully connected layer is applied to the global representation vector, which
reduces its dimension to 1 × 1 × C

r with a reduction ratio r. Then a ReLU is
adopted for nonlinear activation, and a second fully connected layer is applied
to regain its dimension to 1× 1×C. In the end, a sigmoid function is employed
to activate the vector, which is later multiplied by the original feature maps
to acquire weighted feature maps. Supposing that the weights of the first and
second fully connected layer are denoted as V1 ∈ RC

r ×C and V2 ∈ RC×C
r , the
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ReLU function is denoted as δ and the sigmoid function is denoted as σ, the
excitation step can be described as

Gexcitation(z, V ) = σ(V2δ(V1z)). (2)

As a SE module contains two fully connected layers that contain a massive
number of parameters, it can result in slowing down the model training. In addi-
tion, the SE module endures a dimension reduction and a dimension increment,
which might cause loss of information from original feature maps [14]. To limit
model complexity and avoid dimension variation, we find this ECA module [14]
that applies one convolution operation to generate the channel attention vector.
The ECA module is more efficient as it has much fewer parameters. It can also
preserve information better than the SE module as it avoids dimension reduction.

Similar to the SE module, the ECA module first applies a global average pool-
ing layer to compress feature maps to a global representation vector z ∈ R1×1×C .
A convolution layer with a kernel size of k and zero-padding of ⌊k

2 ⌋ is then ap-
plied to the compressed vector to produce a channel attention vector with the
size of the global representation vector. This operation captures local interac-
tion across channels with a coverage of k. It is efficient that it only introduces
k number of extra parameters. Given the channel dimension C, to adaptively
determine the size of coverage k, the authors of the ECA module proposed a
nonlinear mapping [14] as below

k = | log2(C)

γ
+

b

γ
|odd. (3)

where γ and b are two constants.
The process of the ECA module is illustrated in a more understandable way

in Fig. 2b. The input block is down-sampled by a global average pooling layer. A
convolution operation is performed on the compressed vector and generates the
channel attention vector without dimension reduction. Then, a sigmoid func-
tion is applied to introduce nonlinearity. Finally, the channel attention vector is
multiplied by original feature maps to obtain the weighted feature maps. It is
observed that the ECA module has fewer steps and does not have the process of
dimension reduction. Therefore, ConvNet-CA adopts ECA modules to perform
channel attention.

3.3 ConvNet-CA

As it is shown in Fig. 3, ConvNet-CA has a very simple and elegant architecture.
It consists of three blocks and one fully connected output layer. In the first block,
we employ a 3Ö3 convolution followed by ReLU. Then we apply the first channel
attention module. At the end of the first block, there exists a max-pooling layer.
Convolution, channel attention module, and max-pooling layer constitute the
first block. The second and the third blocks repeat the first block’s structure.
The main difference is the number of kernels in convolutoinal layers. After these
three main blocks, we adopt a fully connected layer with dropout to output
classification probabilities.
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(a) SE module

(b) ECA module

Fig. 2. Comparison of ECA module with SE module

Fig. 3. Overall structure of ConvNet-CA

3.4 Evaluation metrics

Due to the small size of the dataset, we adopt the 5-fold cross-validation scheme
to evaluate models’ performance and generalization ability. The dataset is par-
titioned into five subsets. Each subset is called a fold. We perform five iterations
of training and testing. In each iteration, one fold of data is used in testing, while
the remaining folds are used in training. The averaged model performance on
five iterations is calculated as the 5-fold cross-validated performance.

Four common evaluation metrics, including accuracy (ACC), precision (PRE),
sensitivity (SEN), and f1-score (F1s), are used to compare classification perfor-
mance among different methods. True Positive (TP), False Positive (FP), True
Negative (TN), and False Negative (FN) of predicted results are introduced to
define above evaluation metrics. The definitions are as follows

ACC =
TP + TN

TP + FP + TN + FN
(4)

PRE =
TP

TP + FP
(5)

SEN =
TP

TP + FN
(6)

F1s = 2× PRE × SEN

PRE + SEN
(7)
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As this is a multi-class classification task, PRE, SEN, and F1s are first calcu-
lated for each class separately, and then the unweighted means of them, termed
as PREmacro, SENmacro, and F1smacro, are used to give an overall performance.

4 Experiments and results

4.1 Experiment set-up

The study conducted experiments on a NVIDIA TESLA P100 GPU with 16
GB RAM provided by Kaggle. The hyperparameter settings of ConvNet-CA are
given in Table 2. It is worth noting that other methods of comparison used in
this study are trained under the same settings of optimizer, learning rate, batch
size and trainning epochs (see Table 3).

Table 2. Hyperparameter settings of ConvNet-CA.

Hyperparameter Value Hyperparameter Value

Optimizer Adam Training epochs 100
Learning rate 0.0001 Activation function ReLU
Dropout 0.2 Kernel size 3
Batch size 1 Number of Conv Layers 3

4.2 Performance on multi-class classification

We compared ConvNet-CA with four popular CNNs with strong representa-
tion capability. These networks are derived from Xception [2], Inception [11],
ResNet50 [5], DenseNet121 [7]. As the dataset used in this study is a small
dataset, directly training deep networks on it can lead to the overfitting prob-
lem. Thus, these networks were pre-trained on a large dataset, ImageNet, to
learn how to capture representative features from images and then re-trained on
our medical dataset. To adapt our dataset, the original fully connected layers at
the end of these networks are replaced with a global average pooling layer and
two new fully connected layers to perform a 5-class classification task. Except
for the new fully connected layers, parameters of other layers of networks are
frozen. These networks are re-trained to perform a domain-specific task.

The performance of different networks is summarised in Table 3. ConvNet-CA
achieved the best performance over all metrics, with the classification accuracy
of 94.88±3.64%, the macro precision of 96.50±2.74%, the macro sensitivity of
93.34±5.01%, and the macro f1-score of 94.21±4.45%. The deviation of accuracy
and precision of ConvNet-CA are the smallest, indicating that its performance
was more stable than other methods. In contrast, most deep networks achieved
over 80.00% of all metrics, apart from ResNet50. The total number of parameters
and FLOPs of different networks are shown in Table 4. It shows that ConvNet-
CA has much fewer parameters and requires less computational resources. Its
performance indicates that it can capture useful pattern more effectively.
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Table 3. Classification performance. Metrics displayed in ‘mean±standard deviation’
format.

Method ACC(%) PREmacro(%) SENmacro(%) F1smacro(%)

Xception 82.24±5.31 80.73±5.68 81.90±4.82 78.54±4.82
InceptionV3 83.73±2.20 86.98±3.18 82.92±3.80 82.67±3.52
ResNet50 60.96±8.09 56.24±4.03 57.66±4.64 49.09±4.03
DenseNet121 81.28±7.76 80.99±7.48 81.86±5.61 80.52±7.49

ConvNet-CA 94.88±3.64 96.50±2.74 93.34±5.01 94.21±4.45

Table 4. Total number of parameters and FLOPs.

Method Params(M) FLOPs(G)

Xception 22.96 11.95
InceptionV3 23.91 7.73
ResNet50 25.69 10.13
DenseNet121 8.09 7.45

ConvNet-CA 0.80 1.75

4.3 The effectiveness of channel attention mechanism

We designed experiments to study the effectiveness of channel attention used in
ConvNet-CA. We denote ConvNet as the backbone of the ConvNet-CA, where
channel attention is removed. The comparison of performance between ConvNet
and ConvNet-CA is shown in Fig. 4. Experiment results show that the introduc-
tion of channel attention led to an overall performance increase of around 3.00%.
The channel attention allows the network to focus on more useful information.
It is worth noting that channel attention only introduces a few parameters.
The total number of parameters for ConvNet and ConvNet-CA are 798,085 and
798,098, respectively. The slight difference in the number of parameters and the
significant performance improvement demonstrated the effectiveness of channel
attention.

Fig. 4. Comparison between ConvNet-CA and ConvNet
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4.4 Comparison with state-of-the-art methods

The overall performance of ConvNet-CA is compared with several state-of-the-
art methods using the same dataset: VMD+SNPE+ANOVA [4] and FCEntF-II
+ K-ELM [9]. All mentioned methods above classify the brain MRI scans into
five categories. To avoid the overfitting problem, both of our study and the
study of Nayak, et al. [9] adopted a 5-fold cross validation scheme while a 10-
fold cross validation scheme is adopted in the study of Gudigar, et al. [4]. From
the Table 5, it can be observed that our method ConvNet-CA obtained the
highest classification accuracy of 94.88% among the three methods.

Table 5. Comparison with state-of-the-art methods.

Study Method ACC(%)

Gudigar, et al. [4] VMD+SNPE+ANOVA 90.68
Nayak, et al [9] FCEntF-II + K-ELM 93.00

Our approach ConvNet-CA 94.88

5 Conclusion

This study proposed a lightweight attention-based CNN for brain disease detec-
tion. Compared with other deep networks with a large amount of parameters,
our lightweight model can capture features more efficiently and effectively from
a specific dataset, with higher performance over four evaluation metrics in the
study. This network integrates an efficient attention mechanism to assign differ-
ent importance to different channels of feature maps. It enables the model to pay
more attention to most important channels. Experimental resutls demonstrated
the effectivess of the channel attention mechanism used in this study which led
to significant performance enhancements. In the future, we shall apply our pro-
posed model to more medical datasets and improve the model’s generalization
ability. The visualisation of the model is another research direction that would
help us understand how the network works.
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