Skip to main content

Temporal Phase Synchrony Disruption in Dyslexia: Anomaly Patterns in Auditory Processing

  • Conference paper
  • First Online:
Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications (IWINAC 2022)

Abstract

The search for a dyslexia diagnosis based on exclusively objective methods is currently a challenging task. Usually, this disorder is analyzed by means of behavioral tests prone to errors due to their subjective nature; e.g. the subject’s mood while doing the test can affect the results. Understanding the brain processes involved is key to proportionate a correct analysis and avoid these types of problems. It is in this task, biomarkers like electroencephalograms can help to obtain an objective measurement of the brain behavior that can be used to perform several analyses and ultimately making a diagnosis, keeping the human interaction at minimum. In this work, we used recorded electroencephalograms of children with and without dyslexia while a sound stimulus is played. We aim to detect whether there are significant differences in adaptation when the same stimulus is applied at different times. Our results show that following this process, a machine learning pipeline can be built with AUC values up to 0.73.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The study was carried out with the understanding and written consent of each child’s legal guardian and in the presence thereof, and was approved by the Medical Ethical Committee of the Malaga University (ref. 16-2020-H) and according to the dispositions of the World Medical Association Declaration of Helsinki.

References

  1. Adeli, H., Zhou, Z., Dadmehr, N.: Analysis of EEG records in an epileptic patient using wavelet transform. J. Neurosci. Methods 123(1), 69–87 (2003)

    Article  Google Scholar 

  2. Bell, M.A., Cuevas, K.: Using EEG to study cognitive development: issues and practices. J. Cogn. Dev. 13(3), 281–294 (2012)

    Article  CAS  Google Scholar 

  3. De Vos, A., Vanvooren, S., Vanderauwera, J., Ghesquière, P., Wouters, J.: A longitudinal study investigating neural processing of speech envelope modulation rates in children with (a family risk for) dyslexia. Cortex 93, 206–219 (2017)

    Google Scholar 

  4. Di Liberto, G., Peter, V., Kalashnikova, M., Goswami, U., Burnham, D., Lalor, E.: Atypical cortical entrainment to speech in the right hemisphere underpins phonemic deficits in dyslexia. NeuroImage 175, 70–79 (2018)

    Article  Google Scholar 

  5. Dimitriadis, S.I., Simos, P.G., Fletcher, J.M., Papanicolaou, A.C.: Aberrant resting-state functional brain networks in dyslexia: symbolic mutual information analysis of neuromagnetic signals. Int. J. Psychophysiol. 126, 20–29 (2018)

    Article  Google Scholar 

  6. Flanagan, S., Goswami, U.: The role of phase synchronisation between low frequency amplitude modulations in child phonology and morphology speech tasks. J. Acoust. Soc. Am. 143, 1366–1375 (2018). https://doi.org/10.1121/1.5026239

    Article  PubMed  Google Scholar 

  7. Formoso, M.A., Ortiz, A., Martinez-Murcia, F.J., Gallego, N., Luque, J.L.: Detecting phase-synchrony connectivity anomalies in EEG signals. Application to dyslexia diagnosis. Sensors 21(21), 7061 (2021)

    Google Scholar 

  8. Gálvez, G., Recuero, M., Canuet, L., Del-Pozo, F.: Short-term effects of binaural beats on eeg power, functional connectivity, cognition, gait and anxiety in Parkinson’s disease. Int. J. Neural Syst. 28(05), 1750055 (2018). pMID: 29297265

    Google Scholar 

  9. Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)

    Article  Google Scholar 

  10. Hülsemann, M.J., Naumann, E., Rasch, B.: Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Front. Neurosci. 13, 573 (2019)

    Article  Google Scholar 

  11. Li, R., Principe, J.C.: Blinking artifact removal in cognitive EEG data using ICA. In: 2006 International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5273–5276 (2006)

    Google Scholar 

  12. Martinez-Murcia, F.J., et al.: EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. Int. J. Neural Syst. 30(07), 2050037 (2020)

    Article  Google Scholar 

  13. Mirzaei, G., Adeli, A., Adeli, H.: Imaging and machine learning techniques for diagnosis of Alzheimer’s disease. Rev. Neurosci. 27(8), 857–870 (2016)

    Article  Google Scholar 

  14. Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., Carreiras, M.: Out-of-synchrony speech entrainment in developmental dyslexia. Hum. Brain Mapp. 37, 2767–2783 (2016)

    Article  Google Scholar 

  15. Ortiz, A., López, P.J., Luque, J.L., Martínez-Murcia, F.J., Aquino-Britez, D.A., Ortega, J.: An anomaly detection approach for dyslexia diagnosis using EEG signals. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019, Part I. LNCS, vol. 11486, pp. 369–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19591-5_38

    Chapter  Google Scholar 

  16. Perera, H., Shiratuddin, M.F., Wong, K.W., Fullarton, K.: EEG signal analysis of writing and typing between adults with dyslexia and normal controls. Int. J. Interact. Multimed. Artif. Intell. 5(1), 62 (2018)

    Google Scholar 

  17. Peterson, R., Pennington, B.: Developmental dyslexia. Lancet 379, 1997–2007 (2012)

    Article  Google Scholar 

  18. Stam, C.J., Nolte, G., Daffertshofer, A.: Phase lag index: assessment of functional connectivity from multi channel EEG and MEG with diminished bias from common sources. Hum. Brain Mapp. 28(11), 1178–1193 (2007)

    Article  Google Scholar 

  19. Tamboer, P., Vorst, H., Ghebreab, S., Scholte, H.: Machine learning and dyslexia: classification of individual structural neuro-imaging scans of students with and without dyslexia. NeuroImage: Clin. 11, 508–514 (2016)

    Google Scholar 

Download references

Acknowledgments

This work was supported by projects PGC2018-098813-B-C32, PGC2018-098813-B-C31 (Spanish “Ministerio de Ciencia, Innovación y Universidades”), UMA20-FEDERJA-086 and P18-RT-1624 (Consejería de economía y conocimiento, Junta de Andalucía) and by European Regional Development Funds (ERDF) as well as the BioSiP (TIC-251) research group. M. A. Formoso Grant PRE2019-087350 funded by MCIN/AEI/ 10.13039/501100011033 by “ESF Investing in your future”. Work by F.J.M.M. was supported by the MICINN “Juan de la Cierva - Incorporación” Fellowship. We also thank the Leeduca research group and Junta de Andalucía for the data supplied and the support. Funding for open access charge: Spanish “Ministerio de Ciencia, Innovación y Universidades”, and European Regional Development Funds (ERDF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco A. Formoso .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Formoso, M.A., Ortiz, A., Martínez-Murcia, F.J., Brítez, D.A., Escobar, J.J., Luque, J.L. (2022). Temporal Phase Synchrony Disruption in Dyslexia: Anomaly Patterns in Auditory Processing. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06242-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06241-4

  • Online ISBN: 978-3-031-06242-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics