Abstract
Neuronal oscillations provide relevant information that helps to understand the neural mechanisms underlying cognitive processes and neural disorders. EEG and MEG methods record these brain oscillations and offer an invaluable insight into healthy and pathological brain function. These signals are helpful to study and achieve an objective and early diagnosis of neural disorders as Developmental Dyslexia (DD). DD early diagnosis is a challenging task that makes possible the application of individualized intervention tasks to dyslexic children in the early stages. In this work, we use EEG signals to explore the neural basis of DD and progress towards an early differential diagnosis. This is achieved by studying Cross-Frequency Coupling (CFC) mechanisms, such as the Phase-Amplitude Coupling (PAC). We apply a recent approach to infer CFC dynamics, the Holo-Hilbert Spectral Analysis (HHSA). This is a further step to overcome the limitations of current PAC methods. We pursue the HHSA over an EEG dataset from the Leeduca project. Then, Holo-Hilbert spectrums are used to explore the changes and patterns of PAC in DD. Finally, the discriminatory capability of Holo-Hilbert spectrums is validated by machine learning techniques.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aru, J., et al.: Untangling cross-frequency coupling in neuroscience. Curr. Opin. Neurobiol. 31, 51–61 (2015)
Cortiella, C., Horowitz, S.H.: The State of Learning Disabilities: Facts, Trends and Emerging Issues, 3rd edn. National Center for Learning Disabilities (2014)
Canolty, R.T., et al.: High gamma power is phase-locked to theta oscillations in human neocortex. Science 313(5793), 1626–1628 (2006)
Canolty, R.T., Knight, R.T.: The functional role of cross-frequency coupling. Trends Cogn. Sci. 14(11), 506–515 (2010)
Cole, S.R., Voytek, B.: Brain oscillations and the importance of waveform shape. Trends Cogn. Sci. 21(2), 137–149 (2017)
Deering, R., Kaiser, J.: The use of a masking signal to improve empirical mode decomposition. In: Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2005, vol. 4, pp. iv/485–iv/488 (March 2005)
Dvorak, D., Fenton, A.A.: Toward a proper estimation of phase–amplitude coupling in neural oscillations. J. Neurosci. Methods 225, 42–56 (2014)
Górriz, J.M., Ramírez, J., Ortíz, A., Martínez-Murcia, F.J., Segovia, F., Suckling, J., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)
Goswami, U.: A temporal sampling framework for developmental dyslexia. Trends Cogn. Sci. 15(1), 3–10 (2011)
Goswami, U.: A neural basis for phonological awareness? An oscillatory temporal-sampling perspective. Curr. Dir. Psychol. Sci. 27(1), 56–63 (2018)
Goswami, U.: A neural oscillations perspective on phonological development and phonological processing in developmental dyslexia. Lang. Linguist. Compass 13(5), e12328 (2019)
Goswami, U., Huss, M., Mead, N., Fosker, T.: Auditory sensory processing and phonological development in high IQ and exceptional readers, typically developing readers, and children with dyslexia: a longitudinal study. Child Dev. 92, 1083–1098 (2020)
Hsu, H.T., Lee, W.K., Shyu, K.K., Yeh, T.K., Chang, C.Y., Lee, P.L.: Analyses of EEG oscillatory activities during slow and fast repetitive movements using Holo-Hilbert spectral analysis. IEEE Trans. Neural Syst. Rehabil. Eng. 26(9), 1659–1668 (2018)
Huang, N.E., et al.: On Holo-Hilbert spectral analysis: a full informational spectral representation for nonlinear and non-stationary data. Philos. Trans. R. Soc. A: Math. Phys. Eng. Sci. 374(2065), 20150206 (2016)
Huang, N.E., et al.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis. Proc. R. Soc. Lond. Ser. A: Math. Phys. Eng. Sci. 454, 903–995 (1998)
Huang, N.E., Wu, Z., Long, S.R., Arnold, K.C., Chen, X., Blank, K.: On instantaneous frequency. Adv. Adapt. Data Anal. 01(02), 177–229 (2009)
Hülsemann, M.J., Naumann, E., Rasch, B.: Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling. Front. Neurosci. 13, 573 (2019)
Hyafil, A.: Misidentifications of specific forms of cross-frequency coupling: three warnings. Front. Neurosci. 9, 370 (2015)
Juan, C.H., et al.: Revealing the dynamic nature of amplitude modulated neural entrainment with Holo-Hilbert spectral analysis. Front. Neurosci. 15, 977 (2021)
Liang, W.K., Tseng, P., Yeh, J.R., Huang, N.E., Juan, C.H.: Frontoparietal beta amplitude modulation and its interareal cross-frequency coupling in visual working memory. Neuroscience 460, 69–87 (2021)
Lopes da Silva, F.: EEG and MEG: relevance to neuroscience. Neuron 80(5), 1112–1128 (2013)
Martinez-Murcia, F.J., et al.: EEG connectivity analysis using denoising autoencoders for the detection of dyslexia. Int. J. Neural Syst. 30(07), 2050037 (2020)
Molinaro, N., Lizarazu, M., Lallier, M., Bourguignon, M., Carreiras, M.: Out-of-synchrony speech entrainment in developmental dyslexia. Hum. Brain Mapp. 37(8), 2767–2783 (2016)
Mormann, F., et al.: Phase/amplitude reset and theta–gamma interaction in the human medial temporal lobe during a continuous word recognition memory task. Hippocampus 15(7), 890–900 (2005)
Nguyen, K.T., et al.: Unraveling nonlinear electrophysiologic processes in the human visual system with full dimension spectral analysis. Sci. Rep. 9(1), 16919 (2019)
Ortiz, A., López, P.J., Luque, J.L., Martínez-Murcia, F.J., Aquino-Britez, D.A., Ortega, J.: An anomaly detection approach for dyslexia diagnosis using EEG signals. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019, Part I. LNCS, vol. 11486, pp. 369–378. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19591-5_38
Perera, H., Shiratuddin, M.F., Wong, K.W., Fullarton, K.: EEG signal analysis of writing and typing between adults with dyslexia and normal controls. Int. J. Interact. Multimed. Artif. Intell. 5(1), 62 (2018)
Peterson, R.L., Pennington, B.F.: Developmental dyslexia. The Lancet 379(9830), 1997–2007 (2012)
Quinn, A.J., Lopes-dos-Santos, V., Dupret, D., Nobre, A.C., Woolrich, M.W.: EMD: empirical mode decomposition and Hilbert-Huang spectral analyses in Python. J. Open Source Softw. 6(59), 2977 (2021)
Thambirajah, M.S.: Developmental dyslexia: an overview. Adv. Psychiatr. Treat. 16(4), 299–307 (2010)
Tort, A.B.L., et al.: Dynamic cross-frequency couplings of local field potential oscillations in rat striatum and hippocampus during performance of a T-maze task. Proc. Natl. Acad. Sci. 105(51), 20517–20522 (2008)
Tsai, F.F., Fan, S.Z., Lin, Y.S., Huang, N.E., Yeh, J.R.: Investigating power density and the degree of nonlinearity in intrinsic components of anesthesia EEG by the Hilbert-Huang transform: an example using ketamine and alfentanil. PLOS ONE 11(12), e0168108 (2016)
Acknowledgments
This work was supported by projects PGC2018-098813-B-C32 (Spanish “Ministerio de Ciencia, Innovación y Universidades”), UMA20-FEDERJA-086 and P18-RT-1624 (Consejería de economía y conocimiento, Junta de Andalucía), and by European Regional Development Funds (ERDF) as well as the BioSiP (TIC-251) research group. We gratefully acknowledge the support of NVIDIA Corporation with the donation of one of the GPUs used for this research. Work by F.J.M.M. was supported by the IJC2019-038835-I MICINN “Juan de la Cierva - Incorporación” Fellowship. We also thank the Leeduca research group and Junta de Andalucía for the data supplied and support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
Gallego-Molina, N.J., Ortiz, A., Martínez-Murcia, F.J., Rodríguez-Rodríguez, I. (2022). Unraveling Dyslexia-Related Connectivity Patterns in EEG Signals by Holo-Hilbert Spectral Analysis. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_5
Download citation
DOI: https://doi.org/10.1007/978-3-031-06242-1_5
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06241-4
Online ISBN: 978-3-031-06242-1
eBook Packages: Computer ScienceComputer Science (R0)