Abstract
The study of brain cognitive function has recently expanded from classical univariate to multivariate analyses. In combination with different non-invasive neuroimaging modalities, these techniques unveil how cognitive processes are coded in space or in time. Moreover, recent trends allow fusion methods to combine signals of different nature and offer both spatial and temporal coherent information. This work reviews and implements in the MVPAlab Toolbox the Representational Similarity Analysis (RSA) for electroencephalography signals, which is a preliminary step to EEG-fMRI data fusion. To evaluate this methodology we have built a demo dataset from a pre-recorded EEG experiment designed to study differences in preparation between perceptual expectation and selective attention. We discuss the strengths and the versatility of this multivariate technique and its potential applications on multimodal data fusion. The complete source code is fully-integrated in the MVPAlab Toolbox, which increases the broad number of already implemented analyses and the versatility of the tool.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Górriz, J.M., et al.: Artificial intelligence within the interplay between natural and artificial computation: advances in data science, trends and applications. Neurocomputing 410, 237–270 (2020)
Fahrenfort, J.J., van Driel, J., van Gaal, S., Olivers, C.N.L.: From ERPs to MVPA using the Amsterdam Decoding and Modeling toolbox (ADAM). Front. Neurosci. 12, 368 (2018)
Treder, M.S.: MVPA-light: a classification and regression toolbox for multi-dimensional data. Front. Neurosci. 14(June), 1–19 (2020)
Bode, S., Feuerriegel, D., Bennett, D., Alday, P.M.: The Decision Decoding ToolBOX (DDTBOX) - a multivariate pattern analysis toolbox for event-related potentials. Neuroinformatics 17(1), 27–42 (2019)
López-García, D., Peñalver, J.M.G., Górriz, J.M., Ruz, M.: MVPAlab: a machine learning decoding toolbox for multidimensional electroencephalography data. Comput. Methods Programs Biomed. 214, 106549 (2022)
Oostenveld, R., Fries, P., Maris, E., Schoffelen, J.M.: FieldTrip: open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Comput. Intell. Neurosci. 2011, 156869 (2011)
Hanke, M., et al.: PyMVPA: a unifying approach to the analysis of neuroscientific data. Front. Neuroinform. 3, 1–13 (2009)
Gramfort, A., et al.: MEG and EEG data analysis with MNE-Python. Front. Neurosci. 7, 1–13 (2013)
Cichy, R.M., Oliva, A.: A M/EEG-fMRI fusion primer: resolving human brain responses in space and time. Neuron 107(5), 772–781 (2020)
Kriegeskorte, N., Mur, M., Bandettini, P.: Representational similarity analysis - connecting the branches of systems neuroscience. Front. Syst. Neurosci. 2, 1–28 (2008)
Ma, D.S., Correll, J., Wittenbrink, B.: The Chicago face database: a free stimulus set of faces and norming data. Behav. Res. Methods 47(4), 1122–1135 (2015). https://doi.org/10.3758/s13428-014-0532-5
López-García, D., Sobrado, A., González-Peñalver, J.M., Górriz, J.M., Ruz, M.: Multivariate pattern analysis of electroencephalography data in a demand-selection task. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Toledo Moreo, J., Adeli, H. (eds.) IWINAC 2019. LNCS, vol. 11486, pp. 403–411. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-19591-5_41
López-García, D., Sobrado, A., Peñalver, J.M.G., Górriz, J.M., Ruz, M: Multivariate pattern analysis techniques for electroencephalography data to study flanker interference effects. Int. J. Neural Syst. 30(7), 2050024 (2020)
Delorme, A., Makeig, S.: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. J. Neurosci. Methods 134(1), 9–21 (2004)
Nili, H., Wingfield, C., Walther, A., Su, L., Marslen-Wilson, W., Kriegeskorte, N.: A toolbox for representational similarity analysis. PLoS Comput. Biol. 10(4), e1003553 (2014)
Kriegeskorte, N., Kievit, R.A.: Representational geometry: integrating cognition, computation, and the brain. Trends Cogn. Sci. 17(8), 401–412 (2013)
Popal, H., Wang, Y., Olson, I.R.: A guide to representational similarity analysis for social neuroscience. Soc. Cogn. Affect. Neurosci. 14(11), 1243–1253 (2019)
Walther, A., Nili, H., Ejaz, N., Alink, A., Kriegeskorte, N., Diedrichsen, J.: Reliability of dissimilarity measures for multi-voxel pattern analysis. Neuroimage 137, 188–200 (2016)
Acknowledgments
This research was supported by the Spanish Ministry of Science and Innovation under the PID2019-111187GB-I00 grant, by the MCIN/AEI/10.13039/50110 0 011033/ and FEDER “Una manera de hacer Europa” under the RTI2018-098913-B100 project, by the Consejería de Economía, Innovación, Ciencia y Empleo and FEDER under CV20-45250, A-TIC-080-UGR18, B- TIC-586-UGR20 and P20-00525 projects. The first author of this work is supported by a scholarship from the Spanish Ministry of Science and Innovation (BES-2017-079769).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 Springer Nature Switzerland AG
About this paper
Cite this paper
López-García, D., González-Peñalver, J.M., Górriz, J.M., Ruz, M. (2022). Representational Similarity Analysis: A Preliminary Step to fMRI-EEG Data Fusion in MVPAlab. In: Ferrández Vicente, J.M., Álvarez-Sánchez, J.R., de la Paz López, F., Adeli, H. (eds) Artificial Intelligence in Neuroscience: Affective Analysis and Health Applications. IWINAC 2022. Lecture Notes in Computer Science, vol 13258. Springer, Cham. https://doi.org/10.1007/978-3-031-06242-1_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-06242-1_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06241-4
Online ISBN: 978-3-031-06242-1
eBook Packages: Computer ScienceComputer Science (R0)