Skip to main content

Towards Indoor Navigation Under Imprecision

  • Conference paper
  • First Online:
Web and Wireless Geographical Information Systems (W2GIS 2022)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 13238))

  • 415 Accesses

Abstract

Indoor navigation systems help people to navigate through indoor environments. Conventional models of indoor navigation commonly assume that a navigator’s location can be precisely determined. However, the limitations of indoor positioning systems as well as personal privacy constraints mean it is not always possible to determine individual’s position precisely. This paper proposes an approach to developing new algorithms and tools for enabling indoor navigation under imprecision.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dörre, W.H.: Time-activity-patterns of some selected small groups as a basis for exposure estimation: a methodological study. J. Expo. Anal. Environ. Epidemiol. 7(4), 471–491 (1981)

    Google Scholar 

  2. Worboys, M.: Modeling indoor space. In: Proceedings of the 3rd ACM SIGSPATIAL International Workshop on Indoor Spatial Awareness, pp. 1–6 (2011)

    Google Scholar 

  3. Jensen, C.S., Li, K.J., Winter, S.: ISA 2010 workshop report: the other 87%: a report on the second international workshop on indoor spatial awareness (San Jose, California-November 2, 2010). SIGSPATIAL Spec. 3(1), 10–12 (2011)

    Article  Google Scholar 

  4. Yang, L., Worboys, M.: Similarities and differences between outdoor and indoor space from the perspective of navigation. Poster presented at COSIT (2011)

    Google Scholar 

  5. Correa, A., Barcelo, M., Morell, A. and Vicario, J.L.: A review of pedestrian indoor positioning systems for mass market applications. Sensors 17(8), 1927 (2017). 181–184. IEEE Press, New York (2001)

    Google Scholar 

  6. Kolodziej, K.W., Hjelm, J.: Local Positioning Systems: LBS Applications and Services. CRC Press, Boca Raton (2017)

    Google Scholar 

  7. Afyouni, I., Ray, C., Christophe, C.: Spatial models for context-aware indoor navigation systems: a survey. J. Spat. Inf. Sci. 1(4), 85–123 (2012)

    Google Scholar 

  8. Raubal, M., Winter, S.: Enriching wayfinding instructions with local landmarks. In: Egenhofer, M.J., Mark, D.M. (eds.) GIScience 2002. LNCS, vol. 2478, pp. 243–259. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45799-2_17

    Chapter  Google Scholar 

  9. Duckham, M., Kulik, L., Worboys, M.: Imprecise navigation. GeoInformatica 7(2), 79–94 (2003)

    Article  Google Scholar 

  10. Duckham, M., Kulik, L.: “Simplest’’ paths: automated route selection for navigation. In: Kuhn, W., Worboys, M.F., Timpf, S. (eds.) COSIT 2003. LNCS, vol. 2825, pp. 169–185. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39923-0_12

    Chapter  Google Scholar 

  11. Haque, S., Kulik, L., Klippel, A.: Algorithms for reliable navigation and wayfinding. In: Barkowsky, T., Knauff, M., Ligozat, G., Montello, D.R. (eds.) Spatial Cognition 2006. LNCS (LNAI), vol. 4387, pp. 308–326. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-75666-8_18

    Chapter  Google Scholar 

  12. Cuayáhuitl, H., Dethlefs, N., Frommberger, L., Richter, K.-F., Bateman, J.: Generating adaptive route instructions using hierarchical reinforcement learning. In: Hölscher, C., Shipley, T.F., Olivetti Belardinelli, M., Bateman, J.A., Newcombe, N.S. (eds.) Spatial Cognition 2010. LNCS (LNAI), vol. 6222, pp. 319–334. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14749-4_27

    Chapter  Google Scholar 

  13. Amores, D., Tanin, E., Vasardani, M.: A proactive route planning approach to navigation errors. Int. J. Geogr. Inf. Sci. 35(6), 1094–1130 (2021)

    Article  Google Scholar 

  14. Yang, L., Worboys, M.: Generation of navigation graphs for indoor space. Int. J. Geogr. Inf. Sci. 29(10), 1737–1756 (2015)

    Article  Google Scholar 

  15. Liu, L. and Zlatanova, S.: Simplest instructions: Finding easy-to-describe routes for navigation. a “door-to-door” path-finding approach for indoor navigation. In: Proceedings Gi4DM 2011: Geo Information for Disaster Management, Antalya, Turkey, 3–8 May 2011

    Google Scholar 

  16. Hillier, B., Hanson, J.: The Social Logic of Space. Cambridge University Press, Cambridge (1989)

    Google Scholar 

  17. Franz, G., Wiener, J.M.: From space syntax to space semantics: a behaviorally and perceptually oriented methodology for the efficient description of the geometry and topology of environments. Environ. Plan. b: Plan. Des. 35(4), 574–592 (2008)

    Article  Google Scholar 

  18. Kneidl, A., Borrmann, A., Hartmann, D.: Generation and use of sparse navigation graphs for microscopic pedestrian simulation models. Adv. Eng. Inf. 26(4), 669–680 (2012)

    Article  Google Scholar 

  19. Lee, J.: A spatial access-oriented implementation of a 3-D GIS topological data model for urban entities. GeoInformatica 8(3), 237–264 (2004)

    Article  Google Scholar 

  20. Lee, J.: Simplest instructions: Finding easy-to-describe routes for navigation. A three-dimensional navigable data model to support emergency response in microspatial built-environments. Ann. Assoc. Am. Geogr. 97(3), 512–529 (2007)

    Google Scholar 

  21. Worboys, M.F., Duckham, M.: GIS: a Computing Perspective. CRC Press, Boca Raton (2004)

    Google Scholar 

  22. Clementini, E., Pagliaro, A.: The construction of a network for indoor navigation. In: GISTAM, pp. 254–261 (2020)

    Google Scholar 

  23. Hillier, B., Iida, S.: Network effects and psychological effects: a theory of urban movement. In: Proceedings of the 5th International Symposium on Space Syntax, vol. 1, pp. 553–564, Delft: TU Delft (2005)

    Google Scholar 

  24. Chow, J.C., Peter, M., Scaioni, M., Al-Durgham, M.: Indoor tracking, mapping, and navigation: algorithms, technologies, and applications (2018)

    Google Scholar 

  25. Dijkstra, E.W.: A note on two problems in connexion with graphs. Numerische mathematik 1(1), 269–271 (1959)

    Article  MathSciNet  Google Scholar 

  26. Khan, A.A., Yao, Z., Kolbe, T.H.: Simplest instructions: finding easy-to-describe routes for navigation. Context aware indoor route planning using semantic 3D building models with cloud computing. In: Breunig, M., Al-Doori, M., Butwilowski, E., Kuper, P., Benner, J., Haefele, K. (eds.) 3D Geoinformation Science, pp. 175–192, Springer, Cham (2015). https://doi.org/10.1007/978-3-319-12181-9_11

  27. Wang, J., Zhao, H., Winter, S.: Integrating sensing, routing and timing for indoor evacuation. Fire Saf. J. 78, 111–121 (2015)

    Article  Google Scholar 

  28. Clementini, E., D’Orazio, V.: Qualitative routing instructions in indoor space. ISPRS Ann. Photogrammetry Remote Sens. Spat. Inf. Sci. 6, 47–53 (2020)

    Article  Google Scholar 

  29. Chown, E.: Making predictions in an uncertain world: Environmental structure and cognitive maps. Adapt. Behav. 7(1), 17–33 (1999)

    Article  Google Scholar 

  30. Raubal, M., Worboys, M.: A formal model of the process of wayfinding in built environments. In: Freksa, C., Mark, D.M. (eds.) COSIT 1999. LNCS, vol. 1661, pp. 381–399. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48384-5_25

    Chapter  Google Scholar 

  31. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms. MIT Press, Cambridge (2009)

    Google Scholar 

  32. Biswas, S.S., Alam, B., Doja, M.N.: Generalization of Dijkstra’s algorithm for extraction of shortest paths in directed multigraphs. J. Comput. Sci. 9(3), 377–382 (2013)

    Article  Google Scholar 

  33. Perez, A.J., Zeadally, S.: Privacy issues and solutions for consumer wearables. IT Prof. 20(4), 46–56 (2018)

    Article  Google Scholar 

  34. Duckham, M., Kulik, L.: Location privacy and location-aware computing. In: Dynamic and Mobile GIS, pp. 377–382. CRC Press, Boca Raton (2006)

    Google Scholar 

  35. De Montjoye, Y.A., Hidalgo, C.A., Verleysen, M.: Unique in the crowd: the privacy bounds of human mobility. Sci. Rep. 3, 1–5 (2013)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amina Hossain .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hossain, A., Duckham, M., Vasardani, M. (2022). Towards Indoor Navigation Under Imprecision. In: Karimipour, F., Storandt, S. (eds) Web and Wireless Geographical Information Systems. W2GIS 2022. Lecture Notes in Computer Science, vol 13238. Springer, Cham. https://doi.org/10.1007/978-3-031-06245-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06245-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06244-5

  • Online ISBN: 978-3-031-06245-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics