Skip to main content

Development and Validation of Algorithms for Sleep Stage Classification and Sleep Apnea/Hypopnea Event Detection Using a Medical-Grade Wearable Physiological Monitoring System

  • Conference paper
  • First Online:
Wireless Mobile Communication and Healthcare (MobiHealth 2021)

Abstract

Sleep is critical to the overall health of humans. Polysomnography (PSG) is the current gold standard for measuring sleep and diagnosing sleep-related breathing disorders. However, this method is labor-intensive, time-consuming, and confined to a sleep laboratory. In this paper, we leverage algorithms for sleep stage classification and sleep apnea/hypopnea event detection by using signals from single-lead electrocardiograph (ECG) and respiration. To validate the accuracy of the above two algorithms, two independent validation studies were conducted using a medical-grade wearable monitoring system to collect physiological data from patients in both clinical and home settings. In the validation study of sleep stage classification, the average accuracy of our four-class stage classification using the bi-directional long short-term memory (BLSTM) method is 77.83% on our in-house dataset of 30 enrolled patients. In the experiments of sleep apnea screening, the two-level apnea-hypopnea index (AHI) classification reports the overall accuracies of 96.67% and 91.43% in clinical and home environments, respectively. The results showed that the sleep analysis algorithms presented in this paper have good performance in both sleep stage classification and sleep event detection, either in clinical scenario and home settings, indicating that our device can be used along with the two algorithms for sleep analysis.

Zhao Wang and Zhicheng Yang equally contributed to this work.

This work was done during Zhicheng Yang’s internship at Beijing SensEcho Science & Technology Co., Ltd., Beijing, China, when he was a Ph.D. candidate at University of California, Davis, CA, USA.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berry, R.B., et al.: Aasm scoring manual updates for 2017 (version 2.4). J. Clin. Sleep Med. 13(5), 665–666 (2017)

    Article  Google Scholar 

  2. Berry, R.B., et al.: Aasm scoring manual version 2.2 updates: new chapters for scoring infant sleep staging and home sleep apnea testing. J. Clin. Sleep Med. 11(11), 1253–1254 (2015)

    Article  Google Scholar 

  3. Carskadon, M.A., Rechtschaffen, A.: Monitoring and staging human sleep. Principles Pract. Sleep Med. 5, 16–26 (2011)

    Article  Google Scholar 

  4. Chaiard, J., Weaver, T.E.: Update on research and practices in major sleep disorders: part ii-insomnia, willis-ekbom disease (restless leg syndrome), and narcolepsy. J. Nurs. Sch. 51(6), 624–633 (2019)

    Article  Google Scholar 

  5. Cheng, W., Rolls, E.T., Ruan, H., Feng, J.: Functional connectivities in the brain that mediate the association between depressive problems and sleep quality. JAMA Psychiatry 75(10), 1052–1061 (2018)

    Article  Google Scholar 

  6. Dean, D.A., et al.: Scaling up scientific discovery in sleep medicine: the national sleep research resource. Sleep 39(5), 1151–1164 (2016)

    Article  MathSciNet  Google Scholar 

  7. Faßbender, P., Haddad, A., Bürgener, S., Peters, J.: Validation of a photoplethysmography device for detection of obstructive sleep apnea in the perioperative setting. J. Clin. Monit. Comput. 33(2), 341–345 (2018). https://doi.org/10.1007/s10877-018-0151-2

    Article  Google Scholar 

  8. Fonseca, P., Long, X., Radha, M., Haakma, R., Aarts, R.M., Rolink, J.: Sleep stage classification with ecg and respiratory effort. Physiol. Meas. 36(10), 2027 (2015)

    Article  Google Scholar 

  9. Irwin, M.R.: Sleep and inflammation: partners in sickness and in health. Nat. Rev. Immunol. 19(11), 702–715 (2019)

    Article  Google Scholar 

  10. Iwasaki, A., et al.: Screening of sleep apnea based on heart rate variability and long short-term memory. Sleep Breathing 25(4), 1821–1829 (2021). https://doi.org/10.1007/s11325-020-02249-0

    Article  Google Scholar 

  11. Klosh, G., et al.: The siesta project polygraphic and clinical database. IEEE Eng. Med. Biol. Mag. 20(3), 51–57 (2001)

    Article  Google Scholar 

  12. Lajnef, T., et al.: Learning machines and sleeping brains: automatic sleep stage classification using decision-tree multi-class support vector machines. J. Neurosci. Meth. 250, 94–105 (2015)

    Article  Google Scholar 

  13. Li, P., et al.: Mobicardio: a clinical-grade mobile health system for cardiovascular disease management. In: 2019 IEEE International Conference on Healthcare Informatics (ICHI), pp. 1–6. IEEE (2019)

    Google Scholar 

  14. Long, X., et al.: Measuring dissimilarity between respiratory effort signals based on uniform scaling for sleep staging. Physiol. Meas. 35(12), 2529 (2014)

    Article  Google Scholar 

  15. Magnusdottir, S., Hilmisson, H.: Ambulatory screening tool for sleep apnea: analyzing a single-lead electrocardiogram signal (ecg). Sleep Breathing 22(2), 421–429 (2018). https://doi.org/10.1007/s11325-017-1566-6

    Article  Google Scholar 

  16. Myllymaa, S., et al.: Assessment of the suitability of using a forehead eeg electrode set and chin emg electrodes for sleep staging in polysomnography. J. Sleep Res. 25(6), 636–645 (2016)

    Article  Google Scholar 

  17. Cho, J.H., Kim, H.J.: Validation of apnealink ox\(^{\rm TM}\) plus for the diagnosis of sleep apnea. Sleep Breathing 21(3), 799–807 (2017). https://doi.org/10.1007/s11325-017-1532-3

    Article  Google Scholar 

  18. Peppard, P.E., Young, T., Barnet, J.H., Palta, M., Hagen, E.W., Hla, K.M.: Increased prevalence of sleep-disordered breathing in adults. Am. J. Epidemiol. 177(9), 1006–1014 (2013)

    Article  Google Scholar 

  19. Pigeon, W.R., Taylor, M., Bui, A., Oleynk, C., Walsh, P., Bishop, T.M.: Validation of the sleep-wake scoring of a new wrist-worn sleep monitoring device. J. Clin. Sleep Med. 14(6), 1057–1062 (2018)

    Article  Google Scholar 

  20. Pinheiro, G., Cruz, A., Genta, P., Lorenzi-Filho, G.: Validation of a wireless wearable oximeter using mobile technology and cloud computing for the diagnosis of obstructive sleep apnea. In: B68. Diagnosis and Treatment of Sleep Disordered Breathing, pp. A3976–A3976. American Thoracic Society (2018)

    Google Scholar 

  21. Pion-Massicotte, J., Godbout, R., Savard, P., Roy, J.F.: Development and validation of an algorithm for the study of sleep using a biometric shirt in young healthy adults. J. Sleep Res. 28(2), e12667 (2019)

    Article  Google Scholar 

  22. Iber, C., et al.: The sleep heart health study: design, rationale, and methods. Sleep 20(12), 1077–1085 (1997)

    Google Scholar 

  23. Radha, M., et al.: Sleep stage classification from heart-rate variability using long short-term memory neural networks. Sci. Rep. 9(1), 1–11 (2019)

    Article  Google Scholar 

  24. Redmond, S.J., de Chazal, P., O’Brien, C., Ryan, S., McNicholas, W.T., Heneghan, C.: Sleep staging using cardiorespiratory signals. Somnologie-Schlafforschung und Schlafmedizin 11(4), 245–256 (2007). https://doi.org/10.1007/s11818-007-0314-8

    Article  Google Scholar 

  25. Ruehland, W.R., Rochford, P.D., O’Donoghue, F.J., Pierce, R.J., Singh, P., Thornton, A.T.: The new aasm criteria for scoring hypopneas: impact on the apnea hypopnea index. Sleep 32(2), 150–157 (2009)

    Article  Google Scholar 

  26. Shi, P., Zheng, X., Du, P., Yuan, F.: Automatic sleep stage classification based on LSTM. In: Sun, Y., Lu, T., Xie, X., Gao, L., Fan, H. (eds.) ChineseCSCW 2018. CCIS, vol. 917, pp. 478–486. Springer, Singapore (2019). https://doi.org/10.1007/978-981-13-3044-5_35

    Chapter  Google Scholar 

  27. Silber, M.H., et al.: The visual scoring of sleep in adults. J. Clin. Sleep Med. 3(02), 121–131 (2007)

    Article  Google Scholar 

  28. Somers, V.K., et al.: Sleep apnea and cardiovascular disease: an American heart association/American college of cardiology foundation scientific statement from the american heart association council for high blood pressure research professional education committee, council on clinical cardiology, stroke council, and council on cardiovascular nursing in collaboration with the national heart, lung, and blood institute national center on sleep disorders research (national institutes of health). J. Am. Coll. Cardiol. 52(8), 686–717 (2008)

    Article  Google Scholar 

  29. Stephansen, J.B., et al.: Neural network analysis of sleep stages enables efficient diagnosis of narcolepsy. Nat. Commun. 9(1), 1–15 (2018)

    Article  Google Scholar 

  30. Strollo, P.J., Jr., Rogers, R.M.: Obstructive sleep apnea. N. Engl. J. Med. 334(2), 99–104 (1996)

    Article  Google Scholar 

  31. Tal, A., Shinar, Z., Shaki, D., Codish, S., Goldbart, A.: Validation of contact-free sleep monitoring device with comparison to polysomnography. J. Clini. Sleep Med. 13(3), 517–522 (2017)

    Article  Google Scholar 

  32. Tataraidze, A., Korostovtseva, L., Anishchenko, L., Bochkarev, M., Sviryaev, Y.: Sleep architecture measurement based on cardiorespiratory parameters. In: 2016 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3478–3481. IEEE (2016)

    Google Scholar 

  33. Thomas, R.J., Mietus, J.E., Peng, C.K., Goldberger, A.L.: An electrocardiogram-based technique to assess cardiopulmonary coupling during sleep. Sleep 28(9), 1151–1161 (2005)

    Article  Google Scholar 

  34. Xiao, M., Yan, H., Song, J., Yang, Y., Yang, X.: Sleep stages classification based on heart rate variability and random forest. Biomed. Sign. Proces. Control 8(6), 624–633 (2013)

    Article  Google Scholar 

  35. Xu, H., et al.: Study on the accuracy of cardiopulmonary physiological measurements by a wearable physiological monitoring system under different activity conditions. Sheng wu yi xue gong cheng xue za zhi=J. Biomed. Eng.=Shengwu yixue gongchengxue zazhi 37(1), 119–128 (2020)

    Google Scholar 

  36. Xu, H., et al.: Construction and application of a medical-grade wireless monitoring system for physiological signals at general wards. J. Med. Syst. 44(10), 1–15 (2020). https://doi.org/10.1007/s10916-020-01653-z

    Article  Google Scholar 

  37. Xu, H., et al.: Assessing electrocardiogram and respiratory signal quality of a wearable device (sensecho): semisupervised machine learning-based validation study. JMIR mHealth uHealth 9(8), e25415 (2021)

    Article  Google Scholar 

  38. Xu, L., et al.: Validation of the nox-t3 portable monitor for diagnosis of obstructive sleep apnea in chinese adults. J. Clin. Sleep Med. 13(5), 675–683 (2017)

    Article  Google Scholar 

  39. Yang, Z., Pathak, P.H., Zeng, Y., Liran, X., Mohapatra, P.: Vital sign and sleep monitoring using millimeter wave. ACM Trans. Sens. Netw. (TOSN) 13(2), 1–32 (2017)

    Article  Google Scholar 

  40. Zhang, Y., et al.: Breathing disorder detection using wearable electrocardiogram and oxygen saturation. In: Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, pp. 313–314 (2018)

    Google Scholar 

  41. Zhang, Y., et al.: Automated sleep period estimation in wearable multi-sensor systems. In: Proceedings of the 16th ACM Conference on Embedded Networked Sensor Systems, pp. 305–306 (2018)

    Google Scholar 

  42. Zhao, M., Yue, S., Katabi, D., Jaakkola, T.S., Bianchi, M.T.: Learning sleep stages from radio signals: a conditional adversarial architecture. In: International Conference on Machine Learning, pp. 4100–4109. PMLR (2017)

    Google Scholar 

Download references

Acknowledgment

This work is supported by The National Natural Science Foundation of China (62171471); Beijing Municipal Science and Technology (Z181100001918023); Big Data Research & Development Project of Chinese PLA General Hospital (2018MBD-09).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzhu Li or Zhengbo Zhang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, Z. et al. (2022). Development and Validation of Algorithms for Sleep Stage Classification and Sleep Apnea/Hypopnea Event Detection Using a Medical-Grade Wearable Physiological Monitoring System. In: Gao, X., Jamalipour, A., Guo, L. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-031-06368-8_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06368-8_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06367-1

  • Online ISBN: 978-3-031-06368-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics