Abstract
Research on mobile sensing for mental health monitoring has traditionally explored the correlation between smartphone and wearable data with self-reported mental health symptom severity assessments. The effectiveness of predictive techniques to monitor depression is limited, given the idiosyncratic nature of depression symptoms and the limited availability of objectively labelled depression sensor-driven behaviour. In this paper, we investigate the possibility of using unsupervised anomaly detection methods to monitor the fluctuations of mental health and its severity. Informed by literature, we created a mobile application that collects acknowledged data streams that can be indicative of depression. We recruited 11 participants for a 1-month field study. More specifically, we monitored participants’ mobility, overall smartphone interactions, and surrounding ambient noise. The participants provided three self-reports: Big five personality traits, sleep and depression. Our results suggest that digital markers, combined with anomaly detection methods are useful to flag changes in human behaviour over time; thus, enabling mobile just-in-time interventions for in-the-wild assistance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
I Acoustics: Comparitive Examples of Noise Levels—Industrial Noise Control, January 2020. https://www.industrialnoisecontrol.com/comparative-noise-examples.htm
Adler, D.A., et al.: Predicting early warning signs of psychotic relapse from passive sensing data: an approach using encoder-decoder neural networks. JMIR Mhealth Uhealth 8(8), e19962 (2020). https://doi.org/10.2196/19962
Barnett, I., Torous, J., Staples, P., Sandoval, L., Keshavan, M., Onnela, J.P.: Relapse prediction in schizophrenia through digital phenotyping: a pilot study. Neuropsychopharmacology 43(8), 1660 (2018). 10/gdrks3
Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., Erbaugh, J.: An inventory for measuring depression. Arch. Gen. Psychiatry 4(6), 561–571 (1961). https://doi.org/10.1001/archpsyc.1961.01710120031004
Ben-Zeev, D., Schueller, S.M., Begale, M., Duffecy, J., Kane, J.M., Mohr, D.C.: Strategies for mhealth research: lessons from 3 mobile intervention studies. Adm. Policy Mental Health Mental Health Serv. Res. 42(2), 157–167 (2015)
van Berkel, N., Ferreira, D., Kostakos, V.: The experience sampling method on mobile devices. ACM Comput. Surv. 50(6), 93:1–93:40 (2017). https://doi.org/10.1145/3123988. http://doi.acm.org/10.1145/3123988
Beygelzimer, A., Kakadet, S., Langford, J., Arya, S., Mount, D., Li, S.: FNN: Fast Nearest Neighbor Search Algorithms and Applications, February 2019. https://CRAN.R-project.org/package=FNN
Böhmer, M., Hecht, B., Schöning, J., Krüger, A., Bauer, G.: Falling asleep with angry birds, Facebook and kindle: a large scale study on mobile application usage. In: Proceedings of the 13th International Conference on Human Computer Interaction with Mobile Devices and Services, pp. 47–56 (2011)
Bonful, H.A., Anum, A.: Sociodemographic correlates of depressive symptoms: a cross-sectional analytic study among healthy urban ghanaian women. BMC Public Health 19(1), 50 (2019)
Breunig, M.M., Kriegel, H.P., Ng, R.T., Sander, J.: LOF: identifying density-based local outliers. In: ACM SIGMOD Record, vol. 29, pp. 93–104. ACM (2000)
Charmaz, K., Belgrave, L., et al.: Qualitative interviewing and grounded theory analysis. In: The SAGE Handbook of Interview Research: The Complexity of the Craft, vol. 2, pp. 347–365 (2012)
Coravos, A., Khozin, S., Mandl, K.D.: Developing and adopting safe and effective digital biomarkers to improve patient outcomes. NPJ Digit. Med. 2(1), 1–5 (2019). https://doi.org/10.1038/s41746-019-0090-4
Croux, C., Rousseeuw, P.J.: Time-efficient algorithms for two highly robust estimators of scale. In: Dodge, Y., Whittaker, J. (eds.) Computational Statistics, pp. 411–428. Springer, Heidelberg (1992). https://doi.org/10.1007/978-3-662-26811-7_58
Dagum, P.: Digital biomarkers of cognitive function. NPJ Digit. Med. 1(1), 1–3 (2018). https://doi.org/10.1038/s41746-018-0018-4
Dionisio, A., Menezes, R., Mendes, D.A.: Mutual information: a measure of dependency for nonlinear time series. Physica A 344(1–2), 326–329 (2004)
Dorsey, E.R., Papapetropoulos, S., Xiong, M., Kieburtz, K.: The first frontier: digital biomarkers for neurodegenerative disorders. Digit. Biomarkers 1(1), 6–13 (2017). https://doi.org/10.1159/000477383
Elshawi, R., Al-Mallah, M.H., Sakr, S.: On the interpretability of machine learning-based model for predicting hypertension. BMC Med. Inform. Decis. Mak. 19(1), 146 (2019)
Eric, G.: iForest: Isolation Forest Anomaly Detection, August 2019. https://rdrr.io/github/Zelazny7/isofor/man/iForest.html
Ester, M., Kriegel, H.P., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD, vol. 96, pp. 226–231 (1996)
Faurholt-Jepsen, M., et al.: Daily electronic self-monitoring in bipolar disorder using smartphones-the Monarca I trial: a randomized, placebo-controlled, single-blind, parallel group trial. Psychol. Med. 45(13), 2691–2704 (2015)
Ferreira, D., Kostakos, V., Dey, A.K.: Aware: mobile context instrumentation framework. Front. ICT 2, 6 (2015)
Ferreira, D., Kostakos, V., Schweizer, I.: Human sensors on the move. In: Loreto, V., et al. (eds.) Participatory Sensing, Opinions and Collective Awareness. UCS, pp. 9–19. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-25658-0_1
Fraccaro, P., et al.: Digital biomarkers from geolocation data in bipolar disorder and schizophrenia: a systematic review. J. Am. Med. Inform. Assoc. 26(11), 1412–1420 (2019). https://doi.org/10.1093/jamia/ocz043
Fried, E.I., Nesse, R.M.: Depression is not a consistent syndrome: an investigation of unique symptom patterns in the star* d study. J. Affect. Disord. 172, 96–102 (2015). https://doi.org/10.1016/j.jad.2014.10.010
Fried, E.I., Nesse, R.M.: Depression sum-scores don’t add up: why analyzing specific depression symptoms is essential. BMC Med. 13(1), 72 (2015)
Gerych, W., Agu, E., Rundensteiner, E.: Classifying depression in imbalanced datasets using an autoencoder-based anomaly detection approach. In: 2019 IEEE 13th International Conference on Semantic Computing (ICSC), pp. 124–127, January 2019. https://doi.org/10.1109/ICOSC.2019.8665535
Goldberg, L.R.: The development of markers for the big-five factor structure. Psychol. Assess. 4, 26 (1992)
Goldstein, M., Uchida, S.: A comparative evaluation of unsupervised anomaly detection algorithms for multivariate data. PLoS ONE 11(4), e0152173 (2016)
Google: Google Play, December 2019. https://play.google.com/store?hl=en%5FGB
Google: Use of SMS or Call Log permission groups - Play Console Help, December 2019. https://support.google.com/googleplay/android-developer/answer/9047303?hl=en
Greenberg, P.E., Fournier, A.A., Sisitsky, T., Pike, C.T., Kessler, R.C.: The economic burden of adults with major depressive disorder in the united states (2005 and 2010). J. Clin. Psychiatry 76(2), 155–162 (2015). https://doi.org/10.4088/JCP.14m09298
Hamilton, M.: A rating scale for depression. J. Neurol. Neurosurg. Psychiatry 23(1), 56 (1960)
Harari, G.M., Lane, N.D., Wang, R., Crosier, B.S., Campbell, A.T., Gosling, S.D.: Using smartphones to collect behavioral data in psychological science: opportunities, practical considerations, and challenges. Perspect. Psychol. Sci. J. Assoc. Psychol. Sci. 11(6), 838–854 (2016). https://doi.org/10.1177/1745691616650285
Hemmerle, A.M., Herman, J.P., Seroogy, K.B.: Stress, depression and Parkinson’s disease. Exp. Neurol. 233(1), 79–86 (2012). https://doi.org/10.1016/j.expneurol.2011.09.035
Holm, S.: A simple sequentially rejective multiple test procedure. Scand. J. Stat. 65–70 (1979)
Holzer, A., Ondrus, J.: Mobile application market: a developer’s perspective. Telematics Inform. 28(1), 22–31 (2011)
Hu, Y., Murray, W., Shan, Y.: RLOF: R Parallel Implementation of Local Outlier Factor (LOF), September 2015. https://CRAN.R-project.org/package=Rlof
Huber, P.J.: Robust Statistics. Springer, Heidelberg (2011)
Huckvale, K., Venkatesh, S., Christensen, H.: Toward clinical digital phenotyping: a timely opportunity to consider purpose, quality, and safety. NPJ Digit. Med. 2(1), 1–11 (2019). https://doi.org/10.1038/s41746-019-0166-1
Jacobson, N.C., Weingarden, H., Wilhelm, S.: Digital biomarkers of mood disorders and symptom change. NPJ Digit. Med. 2(1), 1–3 (2019). https://doi.org/10.1038/s41746-019-0078-0
Jenkins.io: Jenkins and Android, January 2019. https://jenkins.io/solutions/android/index.html
Klobas, J.E., McGill, T.J., Moghavvemi, S., Paramanathan, T.: Compulsive YouTube usage: a comparison of use motivation and personality effects. Comput. Hum. Behav. 87, 129–139 (2018)
Kourtis, L.C., Regele, O.B., Wright, J.M., Jones, G.B.: Digital biomarkers for Alzheimer’s disease: the mobile/wearable devices opportunity. NPJ Digit. Med. 2(1), 1–9 (2019). https://doi.org/10.1038/s41746-019-0084-2
Kroenke, K., Spitzer, R.L., Williams, J.B.: The PHQ-9: validity of a brief depression severity measure. J. Gener. Internal Med. 16(9), 606–613 (2001). https://doi.org/10.1046/j.1525-1497.2001.016009606.x
Lee, J., Lam, M., Chiu, C.: Clara: design of a new system for passive sensing of depression, stress and anxiety in the workplace. In: Cipresso, P., Serino, S., Villani, D. (eds.) MindCare 2019. LNICST, vol. 288, pp. 12–28. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-25872-6_2
Lépine, J.P., Briley, M.: The increasing burden of depression. Neuropsychiatr. Dis. Treat. 7(Suppl. 1), 3 (2011). https://doi.org/10.2147/NDT.S19617
Liang, Y., Zheng, X., Zeng, D.D.: A survey on big data-driven digital phenotyping of mental health. Inf. Fusion 52, 290–307 (2019)
Liao, Z., et al.: A visual analytics approach for detecting and understanding anomalous resident behaviors in smart healthcare. Appl. Sci. 7(3), 254 (2017)
Liu, F.T., Ting, K.M., Zhou, Z.H.: Isolation-based anomaly detection. ACM Trans. Knowl. Discov. Data (TKDD) 6(1), 3 (2012)
Lotfi, A., Langensiepen, C., Mahmoud, S.M., Akhlaghinia, M.J.: Smart homes for the elderly dementia sufferers: identification and prediction of abnormal behaviour. J. Ambient. Intell. Humaniz. Comput. 3(3), 205–218 (2012)
Macchia, A., et al.: Depression worsens outcomes in elderly patients with heart failure: an analysis of 48,117 patients in a community setting. Eur. J. Heart Fail. 10(7), 714–721 (2008)
Madsen, J.H.: Connectivity-based Outlier Factor (COF) algorithm in DDoutlier: Distance & Density-Based Outlier Detection, May 2019. https://rdrr.io/cran/DDoutlier/man/COF.html
Maechler, M., Rousseeuw, P., Croux, C., Todorov, V., Ruckstuhl, A., Salibian-Barrera, M.: Robustbase: Basic Robust Statistics, May 2019. https://CRAN.R-project.org/package=robustbase
Mandryk, R.L., Birk, M.V.: The potential of game-based digital biomarkers for modeling mental health. JMIR Mental Health 6(4), e13485 (2019). https://doi.org/10.2196/13485
Mastoras, R.E., et al.: Touchscreen typing pattern analysis for remote detection of the depressive tendency. Sci. Rep. 9(1), 1–12 (2019). https://doi.org/10.1038/s41598-019-50002-9
Meister, S., Deiters, W., Becker, S.: Digital health and digital biomarkers - enabling value chains on health data. Curr. Dir. Biomed. Eng. 2(1), 577–581 (2016). https://doi.org/10.1515/cdbme-2016-0128
Moshe, I., et al.: Predicting symptoms of depression and anxiety using smartphone and wearable data. Front. Psychiatry 12 (2021). https://doi.org/10.3389/fpsyt.2021.625247
Norton, P.J.: Depression anxiety and stress scales (DASS-21): psychometric analysis across four racial groups. Anxiety Stress Coping 20(3), 253–265 (2007)
Opoku Asare, K., Terhorst, Y., Vega, J., Peltonen, E., Lagerspetz, E., Ferreira, D.: Predicting depression from smartphone behavioral markers using machine learning methods, hyperparameter optimization, and feature importance analysis: exploratory study. JMIR Mhealth Uhealth 9(7), e26540 (2021). https://doi.org/10.2196/26540
Opoku Asare, K., Visuri, A., Ferreira, D.S.T.: Towards early detection of depression through smartphone sensing. In: Adjunct Proceedings of the 2019 ACM International Joint Conference on Pervasive and Ubiquitous Computing and Proceedings of the 2019 ACM International Symposium on Wearable Computers, UbiComp/ISWC 2019 Adjunct, pp. 1158–1161. ACM, New York (2019). https://doi.org/10.1145/3341162.3347075
Peltonen, E., Sharmila, P., Opoku Asare, K., Visuri, A., Lagerspetz, E., Ferreira, D.: When phones get personal: predicting big five personality traits from application usage. Pervasive Mob. Comput. 69, 101269 (2020)
van der Ploeg, T., Austin, P.C., Steyerberg, E.W.: Modern modelling techniques are data hungry: a simulation study for predicting dichotomous endpoints. BMC Med. Res. Methodol. 14(1), 137 (2014)
Rodarte, C.: Pharmaceutical perspective: how digital biomarkers and contextual data will enable therapeutic environments. Digit. Biomarkers 1(1), 73–81 (2017). https://doi.org/10.1159/000479951
Rohani, D.A., Faurholt-Jepsen, M., Kessing, L.V., Bardram, J.E.: Correlations between objective behavioral features collected from mobile and wearable devices and depressive mood symptoms in patients with affective disorders: systematic review. JMIR Mhealth Uhealth 6(8), e165 (2018). https://doi.org/10.2196/mhealth.9691
Saeb, S., Zhang, M., Kwasny, M., Karr, C.J., Kording, K., Mohr, D.C.: The relationship between clinical, momentary, and sensor-based assessment of depression. In: 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), pp. 229–232. IEEE (2015)
Schembre, S.M., et al.: Just-in-time feedback in diet and physical activity interventions: systematic review and practical design framework. J. Med. Internet Res. 20(3), e106 (2018)
Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27(3), 379–423 (1948)
Shmueli, G., Koppius, O.R.: Predictive analytics in information systems research. MIS Q. 35(3), 553–572 (2011). http://www.jstor.org/stable/23042796
Sordo, M., Zeng, Q.: On sample size and classification accuracy: a performance comparison. In: Oliveira, J.L., Maojo, V., Martín-Sánchez, F., Pereira, A.S. (eds.) ISBMDA 2005. LNCS, vol. 3745, pp. 193–201. Springer, Heidelberg (2005). https://doi.org/10.1007/11573067_20
Spathis, D., Servia-Rodriguez, S., Farrahi, K., Mascolo, C., Rentfrow, J.: Passive mobile sensing and psychological traits for large scale mood prediction. In: Proceedings of the 13th EAI International Conference on Pervasive Computing Technologies for Healthcare, PervasiveHealth 2019, pp. 272–281. ACM, New York (2019). https://doi.org/10.1145/3329189.3329213
Stachl, C., et al.: Predicting personality from patterns of behavior collected with smartphones. Proc. Natl. Acad. Sci. 117(30) (2020). https://doi.org/10.1073/pnas.1920484117
Hausser, J., Strimmer, K.: Entropy: Estimation of Entropy, Mutual Information and Related Quantities, November 2014. https://CRAN.R-project.org/package=entropy
Strober, L.B., Arnett, P.A.: Assessment of depression in three medically ill, elderly populations: Alzheimer’s disease, Parkinson’s disease, and stroke. Clin. Neuropsychol. 23(2), 205–230 (2009)
Tang, J., Chen, Z., Fu, A.W., Cheung, D.W.: Enhancing effectiveness of outlier detections for low density patterns. In: Chen, M.-S., Yu, P.S., Liu, B. (eds.) PAKDD 2002. LNCS (LNAI), vol. 2336, pp. 535–548. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-47887-6_53
TENK: Guidelines for ethical review in human sciences. https://tenk.fi/en/advice-and-materials/guidelines-ethical-review-human-sciences
Tseng, V.W.S., et al.: Using behavioral rhythms and multi-task learning to predict fine-grained symptoms of schizophrenia. Sci. Rep. 10(1), 1–17 (2020)
Vega, J., Jay, C., Vigo, M., Harper, S.: Unobtrusive monitoring of Parkinson’s disease based on digital biomarkers of human behaviour. In: Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility, ASSETS 2017, pp. 351–352. Association for Computing Machinery, New York (2017). https://doi.org/10.1145/3132525.3134782
Wagner, D.T., Rice, A., Beresford, A.R.: Device analyzer: large-scale mobile data collection. SIGMETRICS Perform. Eval. Rev. 41(4), 53–56 (2014). https://doi.org/10.1145/2627534.2627553
Wang, R., et al.: Tracking depression dynamics in college students using mobile phone and wearable sensing. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 2(1), 43 (2018)
Wang, W., et al.: Sensing behavioral change over time: using within-person variability features from mobile sensing to predict personality traits. Proc. ACM Interact. Mob. Wearable Ubiquit. Technol. 2(3), 1–21 (2018)
WHO: Depression, March 2018. https://www.who.int/news-room/fact-sheets/detail/depression
Wright, B., Peters, E., Ettinger, U., Kuipers, E., Kumari, V.: Understanding noise stress-induced cognitive impairment in healthy adults and its implications for schizophrenia. Noise Health 16(70), 166–176 (2014)
Acknowledgment
The Me in the Wild study is supported by the Academy of Finland SENSATE (Grant Nos. 316253, 320089), 6Genesis Flagship (Grant No. 318927), and the Infotech Institute University of Oulu Emerging Project. We thank all the participants of the Me in the Wild study.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering
About this paper
Cite this paper
Opoku Asare, K., Visuri, A., Vega, J., Ferreira, D. (2022). Me in the Wild: An Exploratory Study Using Smartphones to Detect the Onset of Depression. In: Gao, X., Jamalipour, A., Guo, L. (eds) Wireless Mobile Communication and Healthcare. MobiHealth 2021. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 440. Springer, Cham. https://doi.org/10.1007/978-3-031-06368-8_9
Download citation
DOI: https://doi.org/10.1007/978-3-031-06368-8_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06367-1
Online ISBN: 978-3-031-06368-8
eBook Packages: Computer ScienceComputer Science (R0)