Abstract
Associating technology with disaster risk management to reduce the impact of climate change from government management is one of the greatest needs at a global level, therefore, the main objective of this research was to validate the prototype of the application called “Paqta” which has been developed on the basis of artificial intelligence. The model “Paqta” from Quechua watch out! is a mobile application that aims to manage risk through geolocation, mainly in urban areas, applying the cooperative method between government and citizens. The evaluation was carried out through expert judgment and field work in situ, it is concluded that the model allows managing the risk of disasters in urban areas.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adikari, K.E., Shrestha, S., Ratnayake, D.T., Budhathoki, A., Mohanasundaram, S., Dailey, M.N.: Evaluation of artificial intelligence models for flood and drought forecasting in arid and tropical regions. Environ. Model. Softw. 144, 105136 (2021). https://doi.org/10.1016/j.envsoft.2021.105136
Ayyad, M., Hajj, M.R., Marsooli, R.: Artificial intelligence for hurricane storm surge hazard assessment. Ocean Eng. 245, 110435 (2022). https://doi.org/10.1016/j.oceaneng.2021.110435
Bellamy, R.: Disponibilidad social de las tecnologías de adaptación. ALAMBRES Clim Change 10, e623 (2019). https://doi.org/10.1002/wcc.623
Fedele, G., Donatti, C.I., Harvey, C.A., Hannah, L., Hole, D.G.: Adaptación transformadora al cambio climático para sistemas socioecológicos sostenibles. Ciencias y políticas ambientales 101, 116–125 (2019). https://doi.org/10.1016/j.envsci.2019.07.001
Galaz, V., et al.: Artificial intelligence, systemic risks, and sustainability. Technol. Soc. 67, 101741 (2021). https://doi.org/10.1016/j.techsoc.2021.101741
Gevaert, C.M., Carman, M., Rosman, B., Georgiadou, Y., Soden, R.: Fairness and accountability of AI in disaster risk management: opportunities and challenges. Patterns 2(11), 100363 (2021). https://doi.org/10.1016/j.patter.2021.100363
Giral, D.A., Hernández, C.A., Martinez, F.H.: Algoritmos para toma de decisiones en redes inalámbricas cognitivas: una revisión. Información tecnológica 30(6), 387–402 (2019)
Hassan, A.: The use of artificial intelligence in digital marketing: a review, applications of artificial intelligence in business, education, and healthcare. In: Studies in Computational Intelligence, vol. 954, pp. 357–383. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72080-3_20
Losada, I.J., Toimil, A., Muñoz, A., Garcia-Fletcher, A.P., Diaz-Simal, P.: A planning strategy for the adaptation of coastal areas to climate change: the Spanish case. Ocean Coast. Manag. 182, 104983 (2019). https://doi.org/10.1016/j.ocecoaman.2019.104983
Mondragon Regalado, J.R., Arbulú Pérez Várgas, C.G.: Decision support systems in disaster risk management policies for adaptation to climate change. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2021. CCIS, vol. 1421, pp. 506–512. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-78645-8_64
Munawar, H.S., Mojtahedi, M., Hammad, A.W.A., Kouzani, A., Mahmud, M.A.P.: Disruptive technologies as a solution for disaster risk management: a review. Sci. Total Environ. 806, 151351 (2022). https://doi.org/10.1016/j.scitotenv.2021.151351
Nagbøl, P.R., Müller, O., Krancher, O.: Designing a risk assessment tool for artificial intelligence systems. In: Chandra Kruse, L., Seidel, S., Hausvik, G.I. (eds.) DESRIST 2021. LNCS, vol. 12807, pp. 328–339. Springer, Cham (2021). https://doi.org/10.1007/978-3-030-82405-1_32
Norvig, P., Russell, S.: Inteligencia artificial. Editora Campus, 20 (2004)
Orsato, R.J., Ferraz de Campos, J.G., Barakat, S.R.: Social learning for anticipatory adaptation to climate change: evidence from a community of practice. Organ. Environ. 32(4), 416–440 (2019). https://doi.org/10.1177/1086026618775325
Persson, Å.: Global adaptation governance: an emerging but contested domain. Wiley Interdisc. Rev. Clim. Change 10(6), e618 (2019). https://doi.org/10.1002/wcc.618
Rahwan, I., Cebrian, M., Obradovich, N., et al.: Machine behavior. Nat. 568, 477–486 (2019). https://doi.org/10.1038/s41586-019-1138-y
Solecki, W., et al.: Extreme events and climate adaptation-mitigation linkages: understanding low-carbon transitions in the era of global urbanization. Wiley Interdisc. Rev. Clim. Change 10(6), e616 (2019). https://doi.org/10.1002/wcc.616
Naciones Unidas: Informe de los Objetivos de Desarrollo Sostenible 2018 (2018). https://unstats.un.org/sdgs/files/report/2018/TheSustainableDevelopmentGoalsReport2018-es.pdf
Venkat, V.: Artificial Intelligence and 3D printing: future of manufacturing. Medium, 25 October (2019). https://medium.com/@venkat34.k/artificial-intelligence-and-3d-printing-future-ofmanufacturing-d84fb94b1c7d
Yigitcanlar, T.: Greening the artificial intelligence for a sustainable planet: an editorial commentary. Sustainability 13(24), 13508 (2021). https://doi.org/10.3390/su132413508
Yu, H., Shen, Z., Miao, C., Leung, C., Lesser, V.R., Yang, Q.: Building ethics into artificial intelligence. arXiv preprint arXiv:1812.02953 (2018)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
Mondragon Regalado, J.R., Huaman Monteza, A., Montenegro Juárez, J.C., Aguirre Baique, N., Cieza Delgado, A.H. (2022). Model “Paqta”: Based on Artificial Intelligence to Manage Disaster Risk in Urban Areas in the Face of Climate Change. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2022 Posters. HCII 2022. Communications in Computer and Information Science, vol 1580. Springer, Cham. https://doi.org/10.1007/978-3-031-06417-3_46
Download citation
DOI: https://doi.org/10.1007/978-3-031-06417-3_46
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06416-6
Online ISBN: 978-3-031-06417-3
eBook Packages: Computer ScienceComputer Science (R0)