Skip to main content

Concept for Supporting Occupational Safety Risk Analysis with a Machine Learning Tool

  • Conference paper
  • First Online:
HCI International 2022 Posters (HCII 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1580))

Included in the following conference series:

Abstract

With rising complexity of work systems, occupational safety experts need to keep up with risk analysis, while smaller enterprises furthermore struggle due to a lack of specialist personnel and due to absence of systematic safety processes. To alleviate this problem, we propose the use of state-of-the-art Machine Learning techniques to support occupational safety risk analysis in enterprises.

In this paper we provide an overview over the inherent challenges of such a system, encompassing data availability and extraction, handling of missing, heterogeneous or just too sparse data with appropriate algorithms and their variants, and User Interface aspects including explainability.

We map out the next steps in the process of implementing a real world application to support occupational safety experts in a large enterprise to prove the feasibility of such an approach and to gather experience, which can eventually be drawn upon to develop a generalized tool, if possible for all the stakeholders present in the occupational safety process.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Mattei, P.-A., Frellsen, J.: MIWAE: deep generative modelling and imputation of incomplete data sets. In: International Conference on Machine Learning. PMLR (2019)

    Google Scholar 

  2. Mirza, B., et al.: Machine learning and integrative analysis of biomedical big data. Genes 10(2), 87 (2019)

    Article  Google Scholar 

  3. Clemen, R.T., Winkler, R.L.: Combining probability distributions from experts in risk analysis. Risk Anal. 19(2), 187–203 (1999)

    Article  Google Scholar 

  4. Wang, Y., et al.: Generalizing from a few examples: a survey on few-shot learning. ACM Comput. Surv. (CSUR) 53(3), 1–34 (2020)

    Article  Google Scholar 

  5. Dellermann, D., et al.: Hybrid intelligence. Bus. Inf. Syst. Eng. 61(5), 637–643 (2019)

    Article  Google Scholar 

  6. Aven, T.: An emerging new risk analysis science: foundations and implications. Risk Anal. 38(5), 876–888 (2018)

    Article  Google Scholar 

  7. Joy, J.: Occupational safety risk management in Australian mining. Occup. Med. 54(5), 311–315 (2004)

    Article  Google Scholar 

  8. O’Beirne, T., Napper, A.: Introduction of systematic safety assessment techniques to underground coal industry (1990)

    Google Scholar 

  9. Tixier, J., et al.: Review of 62 risk analysis methodologies of industrial plants. J. Loss Prev. Process Ind. 15(4), 291–303 (2002)

    Article  Google Scholar 

  10. Amin, M.T., Khan, F., Amyotte, P.: A bibliometric review of process safety and risk analysis. Process Saf. Environ. Prot. 126, 366–381 (2019)

    Article  Google Scholar 

  11. De Silva, N., Ranasinghe, M., De Silva, C.R.: Risk analysis in maintainability of high-rise buildings under tropical conditions using ensemble neural network. Facilities 34( 1/2),  2–27 (2016). https://doi.org/10.1108/F-05-2014-0047

  12. Kittelmann, M., Adolph, L., Michel, A., Packroff, R., Schütte, M., Sommer, S. (Hrsg.): Handbuch Gefährdungsbeurteilung, 1st edn. Bundesanstalt für Arbeitsschutz und Arbeitsmedizin, Dortmund (2022)

    Google Scholar 

  13. BAuA. Handbuch Gefährdungsbeurteilung Teil 2: Gefährdungsfaktoren (2021). https://www.baua.de/DE/Themen/Arbeitsgestaltung-im-Betrieb/Gefaehrdungsbeurteilung/Expertenwissen/Expertenwissen_node.html. Accessed 17 Oct 2021

  14. Dollard, M.F., et al.: Psychosocial safety climate (PSC) and enacted PSC for workplace bullying and psychological health problem reduction. Eur. J. Work Organ. Psy. 26(6), 844–857 (2017)

    Article  Google Scholar 

  15. Shams, R.: Semi-supervised classification for natural language processing. arXiv preprint arXiv:1409.7612 (2014)

  16. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv preprint arXiv:1312.6114 (2013)

  17. Doran, D., Schulz, S., Besold, T.R.: What does explainable AI really mean? A new conceptualization of perspectives. arXiv preprint arXiv:1710.00794 (2017)

  18. Schmidt, A., Herrmann, T.: Intervention user interfaces: a new interaction paradigm for automated systems. Interactions 24(5), 40–45 (2017)

    Article  Google Scholar 

  19. Shneiderman, B., Plaisant, C.: Designing the user Interface: Strategies for Effective Human-Computer Interaction. Pearson Education India (2010)

    Google Scholar 

  20. Herrmann, T.: Socio-technical design of hybrid intelligence systems – the case of predictive maintenance. In: Degen, H., Reinerman-Jones, L. (eds.) HCII 2020. LNCS, vol. 12217, pp. 298–309. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50334-5_20

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin Westhoven .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Westhoven, M., Adolph, L. (2022). Concept for Supporting Occupational Safety Risk Analysis with a Machine Learning Tool. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2022 Posters. HCII 2022. Communications in Computer and Information Science, vol 1580. Springer, Cham. https://doi.org/10.1007/978-3-031-06417-3_63

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06417-3_63

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06416-6

  • Online ISBN: 978-3-031-06417-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics