Skip to main content

Design of Gaze-Based Alarm Acknowledgement by Parameter Characteristics

  • Conference paper
  • First Online:
HCI International 2022 Posters (HCII 2022)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1580))

Included in the following conference series:

  • 1770 Accesses

Abstract

Alarms in industrial control rooms are defined by their ability to alert an operator of abnormal events that require prompt response. However, when vigilant, operators may anticipate upcoming alarms, rendering those alarms less informative if not a nuisance. Three gaze-based alarm acknowledgement methods were designed by estimating operator awareness based on their eye fixations on the parameter/area of interest and parameter behavior shortly before the alarm. The three designs differed in acknowledging the types of parameter behaviors, which could be: a) near the alarm threshold, b) fluctuating drastically, or c) trending towards an alarm threshold. These three parameter behaviors correlate with increased visual sampling, which suggests higher operator awareness or expectation of alarms. In a simulator study comparing the three gaze-based acknowledgement methods against no gaze acknowledgement, 24 participants completed 24 trials of alarm monitoring task while maintaining a single parameter within a predefined range. Analysis of variance revealed that usability ratings were higher for conditions with than without gaze acknowledgements, demonstrating promise for this alarm management approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Seagull, F.J., Xiao, Y., Mackenzie, C.F., Wickens, C.D.: Auditory alarms: from alerting to informing. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 223–226. Sage, Los Angeles (2000). https://doi.org/10.1177/154193120004400160

  2. Meyer, J., Bitan, Y.: Why better operators receive worse warnings. Hum. Factors 44(3), 343–353 (2002). https://doi.org/10.1518/0018720024497754

    Article  Google Scholar 

  3. Lee, M.N., Lees, J.D.: The influence of distraction and driving context on driver response to imperfect collision warning systems. Ergonomics 50(8), 1264–1286 (2007). https://doi.org/10.1080/00140130701318749

    Article  Google Scholar 

  4. Wickens, C.D., Rice, S., Keller, D., Hutchins, S., Hughes, J., Clayton, K.: False alerts in air traffic control conflict alerting system: is there a “cry wolf” effect? Hum. Factors 51(4), 446–462 (2009). https://doi.org/10.1177/0018720809344720

    Article  Google Scholar 

  5. Wickens, C.D., Helton, W.S., Hollands, J.G., Banbury, S.: Engineering Psychology and Human Performance. 4th edn. Pearson (2013). https://doi.org/10.4324/9781003177616

  6. Carrasco, M.: Visual attention: the past 25 years. Vision. Res. 51(13), 1484–1525 (2011). https://doi.org/10.1016/j.visres.2011.04.012

    Article  Google Scholar 

  7. Majaranta, P., Bulling, A.: Eye tracking and eye-based human–computer interaction. In: Advances in Physiological Computing, pp. 39–65. Springer, London (2014). https://doi.org/10.1007/978-1-4471-6392-3_3

  8. Vertegaal, R., Shell, J.S., Chen, D., Mamuji, A.: Designing for augmented attention: towards a framework for attentive user interfaces. Comput. Hum. Behav. 22(4), 771–789 (2006). https://doi.org/10.1016/j.chb.2005.12.012

    Article  Google Scholar 

  9. Hasse, C., Grasshoff, D., Bruder, C.: How to measure monitoring performance of pilots and air traffic controllers. In: Proceedings of the Symposium on Eye Tracking Research and Applications, pp. 409–412. ACM, New York (2012). https://doi.org/10.1145/2168556.2168649

  10. Poole, A., Ball, L.J.: Eye tracking in HCI and usability research. In: Ghaoui, C. (ed.) Encyclopedia of Human Computer Interaction, pp. 211–219. IGI global (2006). https://doi.org/10.4018/978-1-59140-562-7.ch034

  11. Salvucci, D.D., Goldberg, J.H.: Identifying fixations and saccades in eye-tracking protocols. In: Proceedings of the 2000 Symposium on Eye Tracking Research and Applications, pp. 71–78. ACM, New York (2000). https://doi.org/10.1145/355017.355028

  12. Lethaus, F., Harris, R.M., Baumann, M.R.K., Köster, F., Lemmer, K.: Windows of driver gaze data: how early and how much for robust predictions of driver intent? In: Tomassini, M., Antonioni, A., Daolio, F., Buesser, P. (eds.) ICANNGA 2013. LNCS, vol. 7824. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-37213-1

  13. Crossman, E.R.F.W., Cooke, I.E., Beishan, R.J.: Visual Attention and the Sampling of Displayed Information in Process Control. The Human Operator in Process Control. Taylor and Francis, New York (1974)

    Google Scholar 

  14. Kvålseth, T.O.: A decision-theoretic model of the sampling behavior of the human process monitor: experimental evaluation. Hum. Factors 21(6), 671–686 (1979). https://doi.org/10.1177/001872087912210605

    Article  Google Scholar 

  15. de Jong, J., Koster, E.P.: The human operator in the computer-controlled refinery. In: 8th World Petroleum Congress. OnePetro, Moscow (1971)

    Google Scholar 

  16. Patternote, P.H.: The control performance of operators controlling a continuous distillation process. Ergonomics 21(9), 671–679 (1978). https://doi.org/10.1080/00140137808931769

    Article  Google Scholar 

  17. Vicente, K.J., Roth, E.M., Mumaw, R.J.: How do operators monitor a complex, dynamic work domain? The impact of control room technology. Int. J. Hum. Comput. Stud. 54(6), 831–856 (2001). https://doi.org/10.1006/ijhc.2001.0463

    Article  MATH  Google Scholar 

  18. Sheridan, T.B.: On how often the supervisor should sample. IEEE Trans. Syst. Sci. Cybern. 6(2), 140–145 (1970). https://doi.org/10.1109/TSSC.1970.300289

    Article  MATH  Google Scholar 

  19. Kvålseth, T.O.: Human information processing in visual sampling. Ergonomics 21(6), 439–454 (1978). https://doi.org/10.1080/00140137808931741

    Article  Google Scholar 

  20. Bitan, Y., Meyer, J.: Self-initiated and respondent actions in a simulated control task. Ergonomics 50(5), 763–788 (2007). https://doi.org/10.1080/00140130701217149

    Article  Google Scholar 

  21. Hall, P., Morton, S.C.: On the estimation of entropy. Ann. Inst. Stat. Math. 45(1), 69–88 (1993). https://doi.org/10.1007/BF00773669

  22. Wallis, K.: A note on the calculation of entropy from histograms (2006)

    Google Scholar 

  23. Burns, C.M., Hajdukiewicz, J.: Ecological Interface Design. CRC Press (2004)

    Google Scholar 

  24. Robinson, D.N.: Visual discrimination of temporal order. Science 156(3779), 1263–1264 (1967). https://doi.org/10.1126/science.156.3779.1263

    Article  Google Scholar 

  25. Eisma, Y.B., Cabrall, C.D., de Winter, J.C.: Visual sampling processes revisited: replicating and extending Senders (1983) using modern eye-tracking equipment. IEEE Trans. Hum. Mach. Syst. 48(5), 526–540 (2018). https://doi.org/10.1109/THMS.2018.2806200

    Article  Google Scholar 

  26. Herdt, K.E.: Using Eye-tracking to Acknowledge Attended Alarms. Master Thesis, Virginia Tech (2022)

    Google Scholar 

  27. Bradley, J.V.: Robustness? Br. J. Math. Stat. Psychol. 31(2), 144–152 (1978). https://doi.org/10.1111/j.2044-8317.1978.tb00581.x

    Article  MathSciNet  Google Scholar 

  28. Blanca Mena, M.J., Alarcón Postigo, R., Arnau Gras, J., Bono Cabré, R., Bendayan, R.: Non-normal data: Is ANOVA still a valid option? Psicothema 29(4), 552–557 (2017). https://doi.org/10.7334/psicothema2016.383

    Article  Google Scholar 

Download references

Acknowledgements

We thank Dr. Charlie Klauer for her feedback on our research. We also thank Frank Chen, Junjie Liu, and Tianzi Wang in supporting data collection and software development.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Herdt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Herdt, K., Lau, N., Hildebrant, M., Le, T., LeBlanc, K. (2022). Design of Gaze-Based Alarm Acknowledgement by Parameter Characteristics. In: Stephanidis, C., Antona, M., Ntoa, S. (eds) HCI International 2022 Posters. HCII 2022. Communications in Computer and Information Science, vol 1580. Springer, Cham. https://doi.org/10.1007/978-3-031-06417-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-031-06417-3_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-031-06416-6

  • Online ISBN: 978-3-031-06417-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics