Abstract
University dropout is a concern for educational institutions since it directly impacts management and academic results, as well as being directly related to social problems. The literature points out that analyzing this phenomenon is a positive factor for developing programs to combat dropout, in addition to planning interventional actions and academic monitoring, making it possible to identify students at risk of dropout through techniques that use Machine Learning, for example. This paper presents a panoramic study of a public university, in which the school data were analyzed and classified using Machine Learning. The analysis of the data allowed to obtain an overview of the dropout data of the studied university. In addition, the main stakeholders were interviewed to report their main difficulties to know statistics about dropout. Considering these different data sources, we created digital reports to professors, chiefs and academic assistants, with information and statistics to assist university managers in decision-making related. These reports were validated by stakeholders and we hope that the next decisions can minimize any problems related to mental health, thus improving the quality of life of students, as well as their academic trajectory.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Abu-Oda, G.S., El-Halees, A.M.: Data mining in higher education: university student dropout case study. Int. J. Data Min. Knowl. Manage. Process 5(1), 15 (2015)
Aina, C.: Parental background and university dropout in Italy. High. Educ. 65(4), 437–456 (2013)
Ataíde, J., Lima, L., De, E., Alves, O.: A repetência e o abandono escolar no curso de licenciatura em física: um estudo de caso. Physicae 6 (January 2006). https://doi.org/10.5196/physicae.6.5
Barbosa, A.M., Santos, E., Gomes, J.P.P.: A machine learning approach to identify and prioritize college students at risk of dropping out. In: XXVIII Simpósio Brasileiro de Informática na Educação SBIE (Brazilian Symposium on Computers in Education), November 2017, Recife, pp. 1497–1506 (2017). https://doi.org/10.5753/cbie.sbie.2017.1497
Burgos, C., Campanario, M.L., de la Peña, D., Lara, J.A., Lizcano, D., Martínez, M.A.: Data mining for modeling students’ performance: a tutoring action plan to prevent academic dropout. Comput. Electr. Eng. 66, 541–556 (2018)
Casanova, J.R., et al.: Factors that determine the persistence and dropout of university students. Psicothema 30, 408–414 (2018)
Costa, L.F., Ramalho, F.A.: A usabilidade nos estudos de uso da informação: em cena usuários e sistemas interativos de informação. Perspectivas em Ciência da Informação 15, 92–117 (2010). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1413-99362010000100006&nrm=iso
Coutinho, E., Horta Bezerra, J., Bezerra, C.I.M., Moreira, L.: Uma análise da evasão em cursos de graduação apoiado por métricas e visualização de dados (October 2018). https://doi.org/10.5753/cbie.wie.2018.31
Eisenberg, D., Gollust, S., Golberstein, E., Hefner, J.: Prevalence and correlates of depression, anxiety, and suicidality among university students. Am. J. Orthopsychiatry 77, 534–42 (2007). https://doi.org/10.1037/0002-9432.77.4.534
Ferreira, F., Santos, B.S., Marques, B., Dias, P.: FICAvis: data visualization to prevent university dropout. In: 2020 24th International Conference Information Visualisation (IV), pp. 57–62 (2020). https://doi.org/10.1109/IV51561.2020.00034
Ferreira, S.B.L., Leite, J.C.S.: Avaliação da usabilidade em sistemas de informação: o caso do Sistema Submarino. Revista de Administração Contemporânea 7, 115–136 (2003). http://www.scielo.br/scielo.php?script=sci_arttext&pid=S1415-65552003000200007&nrm=iso
FONAPRACE, F.N.d.P.R.d.A.C.e.E.: V pesquisa nacional de perfil socioeconômico e cultural dos (as) graduandos (as) das ifes. Technical report (2018)
Hippel, P.T.V., Hofflinger, A.: The data revolution comes to higher education: identifying students at risk of dropout in Chile. J. High. Educ. Policy Manage. 43, 1–22 (2020). https://doi.org/10.1080/1360080X.2020.1739800
Ivankova, N.V., Stick, S.L.: Students’ persistence in a distributed doctoral program in educational leadership in higher education: a mixed methods study. Res. High. Educ. 48(1), 93–135 (2007)
Kelly, J.O., Menezes, A.G., de Carvalho, A.B., Montesco, C.A.: Supervised learning in the context of educational data mining to avoid university students dropout. In: 2019 IEEE 19th International Conference on Advanced Learning Technologies (ICALT), vol. 2161, pp. 207–208. IEEE (2019)
Kotsiantis, S.: Educational data mining: a case study for predicting dropout-prone students. Int. J. Knowl. Eng. Soft Data Paradigms 1(2), 101–111 (2009)
Lehmann, W.: “i just didn’t feel like i fit in’’: the role of habitus in university dropout decisions. Can. J. High. Educ. 37(2), 89–110 (2007)
Leonhardt, D., Chinoy, S.: The college dropout crisis. The New York Times (May 2019). https://www.nytimes.com/interactive/2019/05/23/opinion/sunday/college-graduation-rates-ranking.html
Lozano, J.M., Rua Vieites, A., Bilbao-Calabuig, P., Casadesús-Fa, M.: University student retention: best time and data to identify undergraduate students at risk of dropout. Innov. Educ. Teach. Int. 57, 1–12 (2018). https://doi.org/10.1080/14703297.2018.1502090
Martins, L.C.B., Carvalho, R.N., Carvalho, R.S., Victorino, M.C., Holanda, M.: Early prediction of college attrition using data mining. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 1075–1078. IEEE (2017)
da Matta, K.W.: Evasão Universitária Estudantil: Precursores Psicológicos do Trancamento de Matrícula por Motivo de Saúde Mental. Master’s thesis, Universidade de Brasília (2011)
Nielsen, J., Molich, R.: Heuristic evaluation of user interfaces. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 249–256 (1990)
Nistor, N., Neubauer, K.: From participation to dropout: quantitative participation patterns in online university courses. Comput. Educ. 55(2), 663–672 (2010)
Pal, S.: Mining educational data using classification to decrease dropout rate of students. Int. J. Multidisciplinary Sci. Eng. 3, 35–39 (2012)
Powdthavee, N., Vignoles, A.: The socio-economic gap in university dropout. B.E. J. Econ. Anal. Policy 9(1), 1–36 (2009)
Reino, L., Hernández-Domínguez, A., Freitas Júnior, O., Carvalho, V., Barros, P., Braga, M.: Análise das causas da evasão na educação a distância em uma instituição federal de ensino superior (October 2015). https://doi.org/10.5753/cbie.sbie.2015.91
Ribeiro, M.: O projeto profissional familiar como determinante da evasão universitária: um estudo preliminar. Revista Brasileira de Orientacao Profissional 6, 55–70 (2005)
dos Santos Baggi, C.A., Lopes, D.A.: Evasão e avaliação institucional no ensino superior: uma discussão bibliográfica. Avaliação: Revista da Avaliação da Educação Superior (Campinas) 16, 355–374 (2011)
Sarra, A., Fontanella, L., Di Zio, S.: Identifying students at risk of academic failure within the educational data mining framework. Soc. Indic. Res. 146(1), 41–60 (2019)
Solís, M., Moreira, T., Gonzalez, R., Fernandez, T., Hernandez, M.: Perspectives to predict dropout in university students with machine learning. In: 2018 IEEE International Work Conference on Bioinspired Intelligence (IWOBI), pp. 1–6. IEEE (2018)
de Souza, A.M.: Machine learning e a evasão escolar: análise preditiva no suporte à tomada de decisão. Master’s thesis, Faculdade de Ciências Empresariais (April 2020). https://repositorio.fumec.br/xmlui/handle/123456789/420
Stein, C.: The push for higher education: College attrition rates. PA Times Org. (July 2018). https://patimes.org/the-push-for-higher-education-college-attrition-rates/
UFAL: Ufal comemora a redução do índice de evasão de estudantes de graduação. Technical report (2019). https://ufal.br/ufal/noticias/2019/10/ufal-comemora-a-reducao-do-indice-de-evasao-de-estudantes-de-graduacao
Veloso, T.C.M.A., de Almeida, E.P.: Evasão nos cursos de graduação da universidade federal de mato grosso, campus universitário de cuiabá - um processo de exclusão. Série-Estudos - Perioódico do Mestrado em Educação da UCDB 13, 133–148 (2002)
Xenos, M., Pierrakeas, C., Pintelas, P.: A survey on student dropout rates and dropout causes concerning the students in the course of informatics of the Hellenic Open University. Comput. Educ. 39(4), 361–377 (2002)
Acknowledgments
The authors would like to thank the CAPES, Brazilian agency, for their financial support. The authors also would like to thank the participants in the requirements gathering and validation stages of the graphical reports. We would also like to thank the Federal University of São Carlos - Brazil, specifically the IT sector, for all the support given to the research.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG
About this paper
Cite this paper
dos Santos, R.S.S., Ponti, M.A., da Hora Rodrigues, K.R. (2022). The Use of Digital Reports to Support the Visualization and Identification of University Dropout Data. In: Yamamoto, S., Mori, H. (eds) Human Interface and the Management of Information: Visual and Information Design. HCII 2022. Lecture Notes in Computer Science, vol 13305. Springer, Cham. https://doi.org/10.1007/978-3-031-06424-1_23
Download citation
DOI: https://doi.org/10.1007/978-3-031-06424-1_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-031-06423-4
Online ISBN: 978-3-031-06424-1
eBook Packages: Computer ScienceComputer Science (R0)